Aghelpour, P., Bagheri-Khalili, Z., Varshavian, V., & Mohammadi, B. (2022). Evaluating three supervised machine learning algorithms (LM, BR, and SCG) for daily pan evaporation estimation in a semi-arid region. Water, 14(21), 3435.
Al Sudani, Z. A., & Salem, G. S. A. (2022). Evaporation rate prediction using advanced machine learning models: a comparative study. Advances in Meteorology, 2022(1), 1433835.
Ali, J., & Saraf, S. (2015). Evaporation modelling by using artificial neural network and multiple linear regression technique. International Journal of Agricultural and Food Science, 5(4), 125-133.
Amer, Z., & Farah, B. (2025). Evaporation forecasting using different machine learning models in Beni Haroun Dam, Algeria. Theoretical and applied climatology.
Deo, R., Samui, P., & Kim, D. (2016). Estimation of monthly evaporative loss using relevance vector machine, extreme learning machine and multivariate adaptive regression spline models. Stochastic Environmental Research and Risk Assessment, 30, 1769-1784.
Deswal, S., & Pal, M. (2008). Modeling Pan Evaporation Using a Support Vector Machine. ISH Journal of Hydraulic Engineering, 14(1), 104-116.
Dong, H., Geng, Y., Sarkis, J., Fujita, T., Okadera, T., & Xue, B. (2013). Regional water footprint evaluation in China: a case of Liaoning. Science of the Total Environment, 442, 215-224.
Ehteram, M., Barzegari Banadkooki, F., & Afshari Nia, M. (2024). Gaussian mutation-alpine skiing optimization algorithm-recurrent attention unit-gated recurrent unit-extreme learning machine model: an advanced predictive model for predicting evaporation. Stochastic Environmental Research and Risk Assessment, 38(5), 1803-1830.
Emamgholizadeh, S., Bahman, K., Bateni, S. M., Ghorbani, H., Marofpoor, I., & Nielson, J. R. (2017). Estimation of soil dispersivity using soft computing approaches. Neural Computing and Applications, 28, 207-216.
Emamgholizadeh, S., & Demneh, R. K. (2019). A comparison of artificial intelligence models for the estimation of daily suspended sediment load: a case study on the Telar and Kasilian rivers in Iran. Water Supply, 19(1), 165-178.
Emamgholizadeh, S., Parsaeian, M., & Baradaran, M. (2015). Seed yield prediction of sesame using artificial neural network. European Journal of Agronomy, 68, 89-96.
Emamgholizadeh, S., & Rahimi, M. A. (2022). Prediction of the scour depth of bridge pier using artificial neural network model and comparison with empirical equations. Advanced Technologies in Water Efficiency, 1(1), 70-90.
Ercin, A. E., & Hoekstra, A. Y. (2014). Water footprint scenarios for 2050: A global analysis. Environment International, 64, 71-82.
Falkenmark, M. (1995). Land–water linkages: a synopsis. In Land and Water Integration and River Basin Management: Proceedings of an FAO Informal Workshop, Vol. 1 (pp. 15-16). Food and Agriculture Organization of the United Nations.
Gelete, G., & Yaseen, Z. M. (2024). Hybridization of deep learning, nonlinear system identification and ensemble tree intelligence algorithms for pan evaporation estimation. Journal of Hydrology, 640, 131704.
Hashemi, G., Mirheidari, S. P., & Santivanez, C. G. D. (2018). Urbanization Impact on the Water and Food Security and Assessment of Wheat Production and its Irrigation Water Requirements Using CROPWAT Model in IRAN: A Case Study of City Tehran. Asian Journal of Advanced Science, 6(1), 7-15.
Hoekstra, A. Y., & Chapagain, A. K. (2008). Globalization of Water: Sharing the Planet’s Freshwater Resources. Blackwell.
Kisi, O., Mirboluki, A., Naganna, S. R., Malik, A., Kuriqi, A., & Mehraein, M. (2022). Comparative evaluation of deep learning and machine learning in modelling pan evaporation using limited inputs. Hydrological Sciences Journal, 67(9), 1309-1327.
Latif, S. D. (2024). Evaluating deep learning and machine learning algorithms for forecasting daily pan evaporation during COVID-19 pandemic. Environment, Development and Sustainability, 26(5), 11729-11742.
Moghaddamnia, A., Ghafari, M., Piri, J., & Han, D. (2009). Evaporation estimation using support vector machines technique. International Journal of Engineering and Applied Sciences, 5(7), 415-423.
Shabani, S., Samadianfard, S., Sattari, M. T., Mosavi, A., Shamshirband, S., Kmet, T., & Várkonyi-Kóczy, A. R. (2020). Modeling pan evaporation using Gaussian process regression K-nearest neighbors random forest and support vector machines; comparative analysis. Atmosphere, 11(1), 66.
Sudheer, K. P., Gosain, A. K., Mohana Rangan, D., & Saheb, S. M. (2002). Modelling evaporation using an artificial neural network algorithm. Hydrological Processes, 16(16), 3189-3202.
Tezel, G., & Buyukyildiz, M. (2016). Monthly evaporation forecasting using artificial neural networks and support vector machines. Theoretical and applied climatology, 124, 69-80.
Wu, L., Huang, G., Fan, J., Ma, X., Zhou, H., & Zeng, W. (2020). Hybrid extreme learning machine with meta-heuristic algorithms for monthly pan evaporation prediction. Computers and electronics in agriculture, 168, 105115.
Yang, Y., & Chui, T. F. M. (2021). Modeling and interpreting hydrological responses of sustainable urban drainage systems with explainable machine learning methods (Vol. 25).