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Accurate prediction of evaporation is critical for effective water resource
management, particularly in arid and semi-arid regions. This research evaluates
the performance of five machine learning algorithms — Decision Tree, K-Nearest
Neighbors, Support Vector Regression, Random Forest, and Artificial Neural
Network — in estimating monthly evaporation rates using meteorological data
collected at the Shahrood Synoptic Station from 1992 to April 2025. The dataset
includes key climatic parameters, including average temperature, wind speed,
precipitation, and relative humidity. Model performance was assessed through four
metrics: Mean Absolute Error, Coefficient of Determination, Kling-Gupta
Efficiency, and Average Absolute Relative Deviation. Results indicate that the
Random Forest model outperformed all others, achieving the lowest MAE of 19.94
mm, the highest KGE of 0.973, and the lowest AARD of 0.521, reflecting superior
accuracy and stability. The Artificial Neural Network model also demonstrated
strong predictive capability, closely followed by Support Vector Regression. In
contrast, simpler models such as Decision Trees and K-Nearest Neighbors
performed comparatively poorly because they could not capture complex
evaporation dynamics. Temporal analysis revealed that all models effectively
captured seasonal evaporation patterns, with Random Forest and Avrtificial Neural
Network most accurately tracing peak and trough fluctuations. The results
demonstrate that machine learning models achieve strong predictive accuracy in
evaporation estimation and provide a reliable approach for assessing evaporation
and water loss.

1. Introduction

Water is a fundamental resource for life,

change, water pollution, and poor water
management  practices  threaten  water

playing a crucial role in sustaining ecosystems,
supporting human health, and driving
economic activities. Agriculture, in particular,
relies heavily on water for irrigation to ensure
food production and global food security.
Additionally, water holds substantial cultural
and social significance, often playing a central
role in community traditions and rituals (Wu et
al., 2020). However, challenges such as climate

availability and quality, emphasizing the need
for sustainable water resource management to
protect ecosystems and support human well-
being. Accurate evaporation estimation is
critical for  effective  water resource
management, agricultural planning, and
hydrological modeling, especially in arid and
semi-arid regions where water scarcity is
prevalent (Gelete & Yaseen, 2024).
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Evaporation represents a key component of the
hydrologic cycle and has a substantial influence
on the design and operation of irrigation
systems, reservoir management, and climate
studies (Shabani et al.,, 2020). Traditional
empirical formulas often fall short of capturing
the nonlinear and complex interactions among
meteorological variables influencing
evaporation, thereby necessitating robust,
intelligent computational models (Deo et al.,
2016).

Evaporation estimation has traditionally relied
on empirical methods such as the Penman-
Monteith, Hargreaves-Samani, and Priestley-
Taylor equations. While effective under certain
conditions, these models often fail to generalize
across diverse climatic regions due to their
sensitivity to input parameters and their
linearity assumptions. (Dong et al., 2013).
Consequently, there has been a shift toward
data-driven approaches, particularly machine
learning (ML), which can model the complex,
nonlinear interactions among meteorological
variables influencing evaporation. Support
Vector Machines (SVMs) are among the
earliest ML methods explored for evaporation
modeling. Several studies confirmed the
SVMSs’ superiority over traditional regression
techniques due to their robust performance
under high-dimensional, nonlinear input
conditions.  (Deswal & Pal, 2008);
(Moghaddamnia et al., 2009); (Yang & Chui,
2021). Their variants, such as Least Squares
SVM and &-SVR, have also been evaluated
favorably in multiple climatic contexts. (Tezel
& Buyukyildiz, 2016).

Avrtificial Neural Networks (ANNS) have been
widely adopted for their ability to capture
nonlinear patterns using input features such as
temperature, humidity, wind speed, and solar
radiation.  These  models  consistently
outperform traditional methods, especially
when trained with sufficient data. (Sudheer et
al.,, 2002); (Ali & Saraf, 2015), and newer
training algorithms like Bayesian
Regularization and Scaled Conjugate Gradient
have been proposed to enhance ANN reliability
(Aghelpour et al., 2022); (Falkenmark, 1995).

Recent advances have led to the integration of
ensemble models and hybrid techniques. For
instance, Random Forests (RF), Gradient
Boosting Machines (GBM), and Quantile
Random Forests (QRF) have been shown to
deliver competitive or superior accuracy
compared to traditional ANN and SVM
methods. (Shabani et al., 2020); (Al Sudani &
Salem, 2022); (Gelete & Yaseen, 2024).
Hybrid and ensemble models, such as extreme
learning machines (ELMs), optimized using
metaheuristic  algorithms, have  shown
improved predictive accuracy. (Wu et al.,
2020); (Ehteram et al., 2024), and recent
developments include the use of deep learning
approaches such as LSTM and GRU, which are
effective in capturing temporal dynamics (Kisi
et al., 2022); (Latif, 2024); (Yang & Chui,
2021).

The soil dispersivity parameter (a), which is
fundamental for modeling contaminant
transport in porous media, is traditionally
measured in situ through costly, time-
consuming experiments. In this study, three
soft computing methods the adaptive neuro-
fuzzy inference system (ANFIS), artificial
neural network (ANN), and gene expression
programming (GEP) were employed to
estimate a based on readily measurable
physical soil and hydraulic variables: travel
distance (L), mean grain size (Dso), soil bulk
density (gb), and contaminant velocity (\Vc).
Model performance was evaluated using mean
absolute error (MAE), root-mean-square error
(RMSE), and coefficient of determination (R?).
Results indicated that the ANN achieved the
best performance with RMSE = 0.00050 m and
R2=0.977, while the ANFIS (RMSE = 0.00062
m, Rz = 0.956) and GEP reached nearly
comparable accuracy. All soft computing
approaches significantly outperformed
multiple linear regression (MLR), and
sensitivity analysis revealed that travel distance
(L) had the most significant and bulk density
(gb) the least influence on soil dispersity
(Emamgholizadeh et al., 2017).

Predicting sesame seed vyield with high
accuracy is vital for effective breeding
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strategies, yet conventional linear models often
struggle to capture the underlying nonlinear
dynamics of plant traits. In this study, we
compared the performance of an artificial
neural network (ANN) with a multiple linear
regression (MLR) model using readily
measurable morpho-phenological variables:
days to full flowering, plant height, number of
capsules per plant, 1,000-seed weight, and
seeds per capsule, based on field trial data. The
ANN outperformed the MLR, achieving an
RMSE of 0.339 t/ha and an R2 of 0.901,
whereas the MLR showed an RMSE of 0.346
t/ha and an R2 of 0.779. Sensitivity analysis
further indicated that capsule count per plant
was the strongest predictor of yield, while
flowering time had the least effect
(Emamgholizadeh et al., 2015).

Estimating suspended sediment load in rivers is
essential for hydraulic engineering, yet
traditional sediment rating curves (SRCs) often
exhibit low precision and high uncertainty.
Leveraging daily discharge and sediment
concentration records from the Kasilian and
Telar stations over 1964-2014, this work
assessed three Al-driven techniques—gene
expression programming (GEP), artificial
neural networks (ANN), and adaptive neuro-
fuzzy inference system (ANFIS) against the
SRC benchmark. The Al models consistently
outperformed the SRC, delivering higher
coefficients of determination (R?) and reduced
mean absolute errors (MAE), with GEP
achieving the top predictive accuracy. These
findings underscore the potential of Al,
particularly GEP, to markedly enhance
suspended sediment load estimation for
improved water resources planning and
management (Emamgholizadeh & Demneh,
2019).

Extreme Learning Machines (ELMs) have
emerged as a promising method for their fast
learning speed and simplicity, especially when
integrated with optimization algorithms like
Flower Pollination Algorithm (FPA) and
Whale Optimization Algorithm (WOA),
significantly improving predictive accuracy
(Wu et al.,, 2020). Further optimization has

been achieved using hybrid metaheuristic
strategies like Gaussian Mutation-Alpine
Skiing Optimization, which enhance feature
selection and  temporal-spatial  pattern
extraction (Ehteram et al., 2024). In parallel,
deep learning approaches, particularly Long
Short-Term  Memory (LSTM) and Gated
Recurrent Unit (GRU) networks, have been
shown to outperform traditional models due to
their ability to capture long-term temporal
dependencies in climatic data (Kisi et al.,
2022), (Latif, 2024); (Yang & Chui, 2021);
(Ercin & Hoekstra, 2014). These models are
especially advantageous in regions with strong
seasonal patterns or limited availability of high-
quality data. Additionally, comparative studies
remain crucial for evaluating the relative
performance of these diverse methods. Several
researchers have benchmarked multiple ML
algorithms on identical datasets to identify
optimal modeling strategies under different
climatic and geographic conditions (Yang &
Chui, 2021); (Amer & Farah, 2025); (Hashemi
etal., 2018)

One of the main challenges in hydraulic
engineering is accurately estimating river
suspended sediment load, and the traditional
sediment rating curve (SRC) method is limited
by low accuracy and high uncertainty. This
study compares three artificial intelligence
models ,gene expression programming (GEP),
artificial neural network (ANN), and adaptive
neuro-fuzzy inference system (ANFIS) with
the SRC method for estimating daily suspended
sediment load at two hydrometric stations in
the Casilan (342.9 km?) and Talar (1,768.6
km?2) watersheds in northern Iran over the
1964-2014 period. The results show that all
three Al models outperform the SRC method,
achieving higher coefficients of determination
(R?) and lower mean absolute errors (MAE),
with GEP yielding the highest R? and lowest
MAE and therefore the best predictive
performance. Thus, the application of Al
techniques ,especially GEP ,can be an effective
tool for improving the accuracy of suspended
sediment load estimation in water resources
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planning and management (Emamgholizadeh
& Demneh, 2019).

Predicting local scour depth around bridge
piers is notoriously tricky due to the combined
effects of pier geometry (length Lp, width Wp,
attack angle 0), flow conditions (velocity V,
depth y), and sediment characteristics (D50,
D84). In this work, a multilayer perceptron
(MLP) neural network trained on both
dimensional and dimensionless datasets via
Buckingham’s z-theorem was evaluated
against multiple linear regression, nonlinear
regression, and the Colorado State University
empirical formula. The optimal MLP
architecture, consisting of a single hidden layer
with a hyperbolic tangent activation function,
delivered outstanding performance: in the
dimensional analysis, it achieved R2=0.99,
RMSE = 0.01 m, MAE = 0.01 m; in the
dimensionless form, R2=0.81, RMSE =0.32 m,
MAE = 0.32 m. By comparison, linear and
nonlinear regressions produced
R2~0.58R"2\approx0.58-0.60 and RMSE =~
0.20-0.42 m, while the CSU equation yielded
R2=0.84 and RMSE=0.52 m. Overall, the MLP
reduced prediction errors by over 70% relative
to linear regression, 85.5% versus nonlinear
regression, and 87.7% compared to the CSU
model, demonstrating its clear advantage for
accurate scour-depth estimation
(Emamgholizadeh & Rahimi, 2022).

These studies collectively highlight that no
single ML algorithm is universally optimal;
model performance depends heavily on input
features, local climatic variability, and the
quantity and quality of training data. Therefore,
a systematic, comparative evaluation using
uniform performance metrics is essential to
identify context-specific best practices for
evaporation  estimation  (Hoekstra &
Chapagain, 2008).

This research focuses on the arid region of
Shahrood to examine and evaluate the
performance of machine learning models in
estimating evaporation. For this purpose, it
utilizes meteorological and climatological data
collected by the Shahrood synoptic station.
These data include parameters such as average

temperature, average relative humidity,
average wind speed, and total monthly
Precipitation, which help estimate evaporation.
Additionally, other parameters, such as average
maximum and minimum  temperatures,
minimum and maximum relative humidity, are
considered to improve model accuracy. To
evaluate the models' performance, consistent
and valid metrics such as mean squared error,
coefficient of determination, and mean absolute
error are used. The ultimate goal of this study
is to introduce and select the most appropriate
machine learning model for accurately
estimating evaporation under the specific
climatic conditions of the Shahrood region.
This selection will be based on the models'
performance in predicting evaporation and
their alignment with the region's local and
climatic conditions. The results of this study
can assist water resource managers in better
planning for water resources in arid areas and
in preventing excessive evaporation.

2. Materials and methods

2.1. Study area

Shahrood is one of the key cities in Semnan
Province, located in the northern part of the
province near Iran's central desert. Situated
approximately 350 kilometers northeast of
Tehran, it lies at the border of North Khorasan
and Yazd provinces. Shahrood’s geographic
position provides convenient connectivity to
other regions of the country via major
highways and railway networks. The climate of
Shahrood is predominantly arid to semi-arid,
characterized by hot, dry summers and cold,
dry winters. These climatic conditions
significantly influence the area's natural
resources, agriculture, and economic activities.
Annual precipitation is limited, averaging less
than 200 millimeters, which imposes
considerable constraints on agriculture and
water availability. The region also experiences
seasonal monsoon winds and dust storms
during specific periods, further shaping its
atmospheric  dynamics. Due to these
environmental factors, agricultural practices in
Shahrood are primarily focused on drought-
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resistant crops such as wheat, barley, and
cotton. However, in some surrounding
mountainous areas, milder temperatures allow
for the cultivation of a wider variety of
horticultural and field crops. Despite the

challenging climate, Shahrood has sustained
economic and industrial growth, supported by
its rich mineral resources and well-developed
transportation infrastructure. The study area is
illustrated in Figure 1.
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Figure 1. Study area: Geographic location of Shahrood Synoptic Station.

2.2. Data Collection

The dataset used in this study comprises
meteorological data collected at the Shahrood
Synoptic Station from 1992 to April 2025. The
data are recorded monthly, providing
comprehensive coverage over more than three
decades. The climatic variables incorporated in
this dataset are shown in Table 1.

2.3. Networks

2.3.1. Decision Tree

The Decision Tree algorithm is a machine
learning approach commonly employed for
regression tasks. It operates by recursively
partitioning the input feature  space,
progressively dividing the data into smaller
subsets to form a hierarchical tree-like
structure. At each node of the tree, a specific

feature is selected as the decision criterion, and
the data is split into branches based on a
threshold for that feature. The choice of the
optimal feature and its corresponding threshold
is typically guided by metrics such as variance
reduction or minimization of mean squared
error. This recursive process continues until a
predefined stopping condition is met, such as
reaching a minimum number of samples in a
node or achieving a satisfactory level of
variance reduction. For prediction, the output
value for a new instance is estimated by
averaging the target values of training samples
within the corresponding leaf node. Notably,
decision trees are invariant to feature scaling,
eliminating the need for standardizing input
data. Owing to their high interpretability and
ability to capture nonlinear relationships
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among features, decision trees are widely
utilized in various regression problems.

Table 1. Description of Climatic Parameters Used in
the research

Parameter Name Description Unit
Average Temperature Monthly average air °C
temperature
Average Wind Speed Monthly average wind m/s
speed
Average Maximum  Monthly average of daily oc
Temperature maxima
Average Minimum  Monthly average of daily oC
Temperature minima
Total Monthly Total precipitation in the
R mm
Precipitation month
Minimum Relative Minimum relative o
Humidity humidity in month 0
Maximum Relative Maximum relative o
Humidity humidity in month 0
Average Relative ~ Monthly average relative o
Humidity humidity 0
Total Monthly Total evaporation in the
. mm
Evaporation month

2.3.2. KNN

The K-Nearest Neighbors (KNN) algorithm is
an instance-based learning method used for
regression tasks that relies on the similarity
between data points. In this approach, the
parameter k—representing the number of
neighbors considered during prediction—is
first specified. The algorithm then computes
the distance between the new sample and each
instance in the training set, typically using the
Euclidean distance metric. Once the k nearest
neighbors are identified, the predicted value for
the new input is estimated by averaging the
target values of these neighbors. Due to its
sensitivity to the scale of input features, KNN
requires data standardization to ensure all
features contribute equally to distance
calculations and to avoid biases caused by
varying feature magnitudes. Owing to its non-
parametric nature and reliance on local
instance-based estimation, KNN is particularly
effective for analyzing datasets with complex
or unknown distributions (EI Bilali et al.,
2022).

2.3.3. SVR

Support Vector Regression (SVR) is a machine
learning technique rooted in Support Vector
Machine (SVM) theory, designed to model
complex nonlinear relationships between
variables in regression problems. Rather than
minimizing the absolute or squared error as in
traditional regression approaches, SVR aims to
identify an optimal hyperplane that predicts
target values within a specified margin of
tolerance, denoted by epsilon (€). The objective
is to construct a function that fits the data as
accurately as possible while allowing for a
predefined error margin, thereby reducing
sensitivity to outliers. To capture nonlinear
patterns, SVR maps the input data into a
higher-dimensional feature space using kernel
functions—such as linear, polynomial, or radial
basis function (RBF) kernels. Within this
transformed space, the algorithm defines two
parallel hyperplanes that enclose the majority
of the training data. Only the data points that
fall outside this epsilon-insensitive region —
known as support vectors — directly influence
the final model. The optimization process in
SVR involves minimizing a cost function that
penalizes deviations beyond the epsilon-
margin, controlled by the regularization
parameter C. This parameter balances the
trade-off between model complexity and the
tolerance for errors. The proper tuning of C and
¢ is crucial for achieving a model that
generalizes well, avoiding both overfitting and
underfitting.

2.3.4. Random Forest

Random Forest is an ensemble-based machine
learning algorithm that constructs a collection
of decision trees to perform predictions. Each
tree is trained independently using a randomly
selected subset of the data and features, and the
final output is determined by aggregating the
predictions of all trees—typically through
averaging for regression tasks or majority
voting for classification. This method is
particularly effective in reducing the risk of
overfitting and enhancing predictive accuracy,
especially in complex or noisy datasets. One of
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the core strengths of Random Forest lies in its
stochastic nature: both the sampling of training
instances (via bootstrapping) and the selection
of features at each split are randomized. This
diversity among individual trees contributes to
a more robust and generalizable model.
Furthermore, Random Forest offers advanced
capabilities, such as feature importance
estimation, which provides valuable insights
into each variable's relative contribution to the
predictive task. The model’s performance is
influenced by key hyperparameters, notably the
number of trees (n_estimators) and the
maximum depth of each tree (max_depth),
which can be tuned to balance model
complexity and accuracy. Owing to its
flexibility and resilience to outliers and high-
dimensional data, Random Forest is widely
applied in both regression and classification
problems across various domains.

2.3.5. ANN (Artificial Neural Network)
Acrtificial Neural Networks (ANNSs) are among
the widely used methods in machine learning.
These models consist of interconnected layers
of computational units, where each unit
receives a set of weighted inputs, processes
them using an activation function, and passes
the output to the subsequent layer. ANNSs can
learn complex patterns and nonlinear
relationships in data by adjusting connection
weights through optimization algorithms such
as gradient descent and backpropagation. This
learning process minimizes the prediction error
on training data and enables the model to
generalize to unseen samples. Key advantages
of ANNSs include their structural flexibility,
adaptability to high-dimensional and large-
scale datasets, and strong predictive power.
They have been successfully applied in various
tasks such as regression, classification, pattern
recognition, and time series forecasting.

2.4. Evaluation Metrics

2.4.1. Mean Absolute Error (MAE)

Mean Absolute Error (MAE) is a metric that
quantifies the average prediction error of a
model by calculating the mean of the absolute
differences between the predicted and actual

values. This metric represents the average
absolute distance between predictions and
actual values, with units consistent with the
target variable, making its interpretation
straightforward and intuitive. The MAE value
indicates, on average, how far the model’s

predictions deviate from the actual

observations. It is computed using equation (1):
1 n

MAE=;Z_1|yf—y| @

where y denotes the actual values, y; the
predicted values, and n the number of samples.

2.4.2. The Coefficient of Determination (R2)
The Coefficient of Determination (R?) is a
metric that indicates how well a predictive
model fits the data and explains the variability
of the target variable. It represents the
proportion of the variance in the observed data
that is accounted for by the model’s
predictions. The value of R2 ranges from 0to 1,
with values closer to 1 indicating a better fit and
higher predictive accuracy. An R2 equal to zero
indicates that the model fails to explain any of
the variation in the data. This metric is
calculated using equation (2):

I (v — w)?
X (y —y)?
where y denotes the actual values, y; the

predicted values, and y the mean of the actual
values.

RZ=1 — @)

2.4.3. R-Square Value (R?)

The Kling-Gupta Efficiency (KGE) is a widely
used performance metric for evaluating
predictive models, especially in hydrology and
environmental engineering. This index
provides a comprehensive assessment by
integrating three key components: the
correlation between observed and predicted
values, the ratio of their means, and the ratio of
their standard deviations. The KGE value
ranges from negative infinity to 1, where 1
indicates  perfect  agreement  between
predictions and observations. Unlike traditional
metrics such as R2? and NSE, the main
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advantage of KGE lies in its simultaneous
consideration of correlation, bias, and
variability, offering a more balanced and
insightful evaluation of model performance.

The KGE is calculated using equation (3):
KGE
=1

R - 3
—\/(r— 1)2+(?—1)2+(?—1)2

y y

where r is the Pearson correlation coefficient
between the predicted values y and the
observed values y, u denotes the mean, and o
represents the standard deviation of the
respective datasets.

2.4.4. Average Absolute Relative Deviation
(AARD)

AARD (Average Absolute Relative Deviation)
is a metric that quantifies a model's prediction
error relative to actual values, expressed as a
percentage. This indicator calculates the
average absolute difference between predicted
and observed values relative to the observed
values, making it convenient for comparing the
accuracy of different models or datasets. A
lower AARD value indicates higher predictive
accuracy. It is calculated using equations (4)
and (5):

ARD; = ~——°F (4)

1
AARD = Z| ARD; | ©)

i=1

In the equation y is the observed value, y; is the
predicted value, and N is the number of
samples.

3. Results and Discussion

In this research, five machine learning models
Decision Tree, K-Nearest Neighbors (KNN),
Support Vector Regression (SVR), Random
Forest, and Artificial Neural Network (ANN)
were evaluated for evaporation prediction
using four performance metrics: Mean
Absolute Error (MAE), coefficient of
determination (R?), Kling—Gupta Efficiency
(KGE), and Average Absolute Relative
Deviation (AARD). As shown in Table 2, the
Decision Tree performed worst, with an MAE
of 25.82, an R? of 0.945, a KGE of 0.963, and
an AARD of 0.895. KNN also performed
relatively poorly, likely due to its high
sensitivity to data noise, yielding an MAE of
22.45, an R? of 0.959, a KGE of 0.936, and an
AARD of 1.098. SVR offered a more balanced
trade-off between accuracy and robustness,
with an MAE of 22.09, an R? of 0.957, a KGE
0f 0.960, and an AARD of 1.042. The Atrtificial
Neural Network (ANN) demonstrated solid
predictive capability, achieving an R? of 0.961,
an MAE of 22.60, and an AARD of 0.627.
These results suggest that the ANN is well-
suited to capturing the complex patterns of
evaporation variability. However, it fell
slightly behind the Random Forest in
minimizing both absolute and relative error.
Analysis of Table 1 shows that the Random
Forest model achieved the best overall
performance, with the lowest MAE (19.94), an
R2 of 0.957, the highest KGE of 0.973, and the
lowest AARD of 0.521. This superiority
reflects its ability to aggregate multiple
decision trees, thereby reducing variance and
minimizing error. Based on the results,
Random Forest achieved the highest accuracy
and stability for evaporation prediction, while
ANN and SVR also performed well. In
contrast, simpler models such as Decision
Trees and KNN struggled to capture the
underlying complexity of the evaporation data,
leading to higher prediction errors.
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Table 2. Comparative performance metrics of the machine learning models

Model MAE (mm) R2 KGE AARD
Decision Tree 25.82 0.945 0.963 0.895
KNN 22.45 0.959 0.936 1.098
SVR 22.09 0.957 0.960 1.042
Random Forest 19.94 0.957 0.973 0.521
ANN 22.60 0.961 0.958 0.627

As illustrated in Figure 2, which presents the
time series of evaporation predictions, all
models successfully capture the seasonal
pattern of evaporation with prominent peaks
typically occurring in June and September, and
troughs observed in spring and autumn.
However, the precision with which each model
tracks these peaks and troughs varies. The
decision tree model frequently underestimates
peak evaporation values, especially during
high-evaporation periods such as the summers
of 1997 and 2006. In contrast, the KNN model
tends to overestimate peaks in certain years, for
instance, in the summers of 1995 and 2002. The
SVR model generally predicts peak values
slightly lower than observed and shows notable
errors during low-evaporation periods, such as
the early spring of 2003 or the autumn of 2015.
The random forest and artificial neural network
(represented by dark blue and green lines,
respectively) tend to follow the actual
observations (light blue line) more closely,
particularly in capturing intense evaporation
peaks in 2005, 2010, and 2018. Nevertheless,
RF occasionally exaggerates peak values ,as in
summer 2009, while ANN sometimes slightly
overestimates very low evaporation levels, as
in autumn 2014. Overall, the most significant
deviations occur during extreme peaks and
troughs, where RF and ANN have shown
superior performance in minimizing tracking
errors. Both models effectively preserve the
seasonal structure of evaporation dynamics and
closely follow the timing and magnitude of
fluctuations. Still, when compared directly, RF
shows a slightly higher tendency to overpredict
peaks, whereas ANN exhibits relatively more
error in estimating sharp declines.

Figure 3 illustrates the scatter plots of predicted
versus observed evaporation values for each

model, providing a visual assessment of their
accuracy and error patterns. The dispersion and
alignment of points relative to the 45-degree
reference line (the ideal fit) vary significantly
across models. The predictions from the
Random Forest and Artificial Neural Network
models exhibit the closest clustering around
this line, indicating minimal absolute error and
the highest correlation with observed data.
Both models demonstrate superior accuracy not
only at peak evaporation levels but also across
lower and moderate ranges, with fewer
instances of under- or overestimation than the
others. In contrast, the Decision Tree model
shows the most incredible spread, suggesting
weaker predictive performance. The KNN and
SVR models fall somewhere in between. At the
same time, they maintain relatively strong
correlations with actual values; however, their
predictions exhibit more scatter, particularly
across certain evaporation intervals, than those
of RF and ANN. This visual analysis reinforces
the earlier findings, confirming that Random
Forests and Artificial Neural Networks have
the greatest capacity to capture evaporation
variability accurately. Simpler models, such as
the Decision Tree, struggle to capture the data's
complexity and consequently produce higher
errors.

Figure 4 presents a bar chart comparing the
predicted evaporation values of five machine
learning models against actual observations
across a range of sampled dates. The Random
Forest and Artificial Neural Network models
exhibit the least deviation from the observed
values. Notably, they closely align with actual
evaporation rates during both peak periods and
sharp declines. In contrast, the Decision Tree
and K-Nearest Neighbors models show greater
variability in their predictions and, in many
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cases, particularly during the middle of the
sampling range and at very low evaporation
levels, tend to overestimate or underestimate
the values systematically. Although the SVR
model demonstrates a reasonable correlation
with observed data, it tends to underestimate
peak evaporation events. This performance
pattern underscores the superior ability of the
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These findings suggest that future research and
practical applications involving evaporation
prediction should prioritize the use of these two
models.
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Figure 2. Comparison of predicted evaporation values by five machine learning models with actual observations
over a range of sampled dates.

500
450
400 s
350 ] _ﬂ@?“ﬁ’”
300 '!,, /gf‘e
250 ‘ . :&is‘;:?d i .
200 - ;} S
L ity
150 .‘ ' 1
100 an i Qgg @
Saddty
R . . . . . . .
0 50 100 150 200 250 300 350 400 450 500
®  Decision Tree o KANN SVR
Random Forest o ANN s Linear (Decision Tree)
""""" Linear (KNN) Linear (SVR) Linear (Random Forest)
--------- Linear (ANN)

Figure 3. Scatter plots of predicted versus actual evaporation values for five machine learning models. The
proximity of points to the 1:1 line indicates the accuracy of the prediction.
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Figure 4. Comparison of predicted evaporation values by five machine learning models with actual observations.

4. Conclusions

This research comprehensively evaluated the
performance of five widely used machine
learning algorithms: Decision Tree, K-
Nearest Neighbors (KNN), Support Vector
Regression (SVR), Random Forest, and
Artificial  Neural Network (ANN) in
predicting monthly evaporation rates in the
Shahrood region using long-term
meteorological data from the Shahrood
Synoptic Station spanning 1992 to April 2025.

Evaporation is a critical component of the
hydrological cycle, especially in arid and
semi-arid regions like Shahrood, where
excessive evaporation can lead to significant
water loss and exacerbate water scarcity
issues. Accurate estimation of evaporation is
essential for effective water resource
management, agricultural planning, and
climate impact mitigation in such vulnerable
environments. However, direct measurement
of evaporation can be challenging. Synoptic
stations sometimes have missing evaporation
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data for certain months, and in some cases,
evaporation measurements have not been
recorded for recent years. Moreover, in some
regions, evaporation data might be completely
unavailable due to the lack of measurement
infrastructure. These limitations motivate the
use of advanced machine learning algorithms
to predict evaporation from  other
meteorological variables, enabling reliable
estimates even in the absence of direct
observations. The dataset, comprising diverse
climatic parameters such as temperature, wind
speed, precipitation, relative humidity, and
evaporation, enabled an in-depth assessment
of model performance under real-world
conditions.  Predictive  accuracy  and
robustness, achieving the lowest Mean
Absolute Error (MAE), highest Kling-Gupta
Efficiency (KGE), and lowest Average
Absolute Relative Deviation (AARD). The
Artificial Neural Network also showed strong
performance, slightly trailing Random Forest
in overall metrics but excelling in modeling
intricate evaporation dynamics. Conversely,
simpler models such as Decision Trees and
KNN exhibited limitations in handling the
complexity and variability of evaporation
processes, leading to higher prediction errors
and less stable outputs. Support Vector
Regression achieved balanced performance
but did not surpass the ensemble and neural
network approaches. The temporal analysis
revealed that all models captured the seasonal
patterns of evaporation, with peaks generally
occurring during summer months and troughs
in spring and autumn. However, Random
Forest and ANN more precisely tracked these
fluctuations, including extreme peaks and
sharp declines, underscoring their suitability
for hydrological and climatic applications in
semi-arid regions such as Shahrood. For
future research, it is recommended to explore
advanced deep learning techniques, such as
Long Short-Term Memory (LSTM), which
have shown great potential for capturing
complex  temporal dependencies and
nonlinear patterns in hydrological time series,
such as evaporation. Additionally, expanding

the application of these machine learning
models to other semi-arid and arid regions
lacking direct evaporation measurements
would provide valuable insights into their
generalizability and robustness across
different climatic and geographic conditions.
Furthermore, a comparative analysis between
traditional evaporation estimation methods
and state-of-the-art machine learning
approaches would help clarify the advantages
and limitations of each, guiding more
effective selection of prediction tools for
water resource management. Such efforts will
ultimately contribute to more accurate and
reliable evaporation forecasting, essential for
optimizing water use and addressing scarcity
challenges in vulnerable regions.

Data Availability

The data used to support the findings of this
study are available from the corresponding
author upon request.

Conflicts of Interest
The authors declare that they have no conflicts
of interest regarding the publication of this

paper.

References

Aghelpour,  P.,  Bagheri-Khalili,  Z.,
Varshavian, V., & Mohammadi, B.
(2022). Evaluating three supervised
machine learning algorithms (LM, BR,
and SCG) for daily pan evaporation
estimation in a semi-arid region. Water,
14(21), 3435.

Al Sudani, Z. A., & Salem, G. S. A. (2022).
Evaporation rate prediction using
advanced machine learning models: a
comparative  study. Advances in
Meteorology, 2022(1), 1433835.

Ali, J.,, & Saraf, S. (2015). Evaporation
modelling by using artificial neural
network and multiple linear regression
technique. International Journal of
Agricultural and Food Science, 5(4),
125-133.



Ebrahimi et al., 2025/ Journal of Hydraulic and Water Engineering (JHWE), Vol. 2, No. 2, 2025, 73-88. 85

Amer, Z., & Farah, B. (2025). Evaporation
forecasting using different machine
learning models in Beni Haroun Dam,
Algeria.  Theoretical and applied
climatology.

Deo, R., Samui, P., & Kim, D. (2016).
Estimation of monthly evaporative loss
using relevance vector machine, extreme
learning machine and multivariate
adaptive regression spline models.
Stochastic Environmental Research and
Risk Assessment, 30, 1769-1784.

Deswal, S., & Pal, M. (2008). Modeling Pan
Evaporation Using a Support Vector
Machine. ISH Journal of Hydraulic
Engineering, 14(1), 104-116.

Dong, H., Geng, Y., Sarkis, J., Fujita, T.,
Okadera, T., & Xue, B. (2013). Regional
water footprint evaluation in China: a
case of Liaoning. Science of the Total
Environment, 442, 215-224.

Ehteram, M., Barzegari Banadkooki, F., &
Afshari  Nia, M. (2024). Gaussian
mutation-alpine  skiing  optimization
algorithm-recurrent attention unit-gated
recurrent unit-extreme learning machine
model: an advanced predictive model for
predicting  evaporation.  Stochastic
Environmental Research and Risk
Assessment, 38(5), 1803-1830.

Emamgholizadeh, S., Bahman, K., Bateni, S.
M., Ghorbani, H., Marofpoor, 1., &
Nielson, J. R. (2017). Estimation of soil
dispersivity using soft computing
approaches. Neural Computing and
Applications, 28, 207-216.

Emamgholizadeh, S., & Demneh, R. K.
(2019). A comparison of artificial
intelligence models for the estimation of
daily suspended sediment load: a case
study on the Telar and Kasilian rivers in
Iran. Water Supply, 19(1), 165-178.

Emamgholizadeh, S., Parsaeian, M., &
Baradaran, M. (2015). Seed vyield
prediction of sesame using artificial
neural network. European Journal of
Agronomy, 68, 89-96.

Emamgholizadeh, S., & Rahimi, M. A.
(2022). Prediction of the scour depth of
bridge pier using artificial neural network
model and comparison with empirical
equations. Advanced Technologies in
Water Efficiency, 1(1), 70-90.

Ercin, A. E., & Hoekstra, A. Y. (2014). Water
footprint scenarios for 2050: A global
analysis. Environment International, 64,
71-82.

Falkenmark, M. (1995). Land—water linkages:
a synopsis. In Land and Water
Integration and River Basin
Management: Proceedings of an FAO
Informal Workshop, Vol. 1 (pp. 15-16).
Food and Agriculture Organization of the
United Nations.

Gelete, G., & Yaseen, Z. M. (2024).
Hybridization of deep learning, nonlinear
system identification and ensemble tree
intelligence  algorithms  for  pan
evaporation estimation. Journal of
Hydrology, 640, 131704.

Hashemi, G., Mirheidari, S. P., & Santivanez,
C. G. D. (2018). Urbanization Impact on
the Water and Food Security and
Assessment of Wheat Production and its
Irrigation Water Requirements Using
CROPWAT Model in IRAN: A Case
Study of City Tehran. Asian Journal of
Advanced Science, 6(1), 7-15.

Hoekstra, A. Y., & Chapagain, A. K. (2008).
Globalization of Water: Sharing the
Planet’s Freshwater Resources.
Blackwell.

Kisi, O., Mirboluki, A., Naganna, S. R,
Malik, A., Kurigi, A., & Mehraein, M.
(2022). Comparative evaluation of deep
learning and machine learning in
modelling pan evaporation using limited
inputs. Hydrological Sciences Journal,
67(9), 1309-1327.

Latif, S. D. (2024). Evaluating deep learning
and machine learning algorithms for
forecasting daily pan evaporation during
COVID-19 pandemic. Environment,
Development and Sustainability, 26(5),
11729-11742.



Ebrahimi et al., 2025/ Journal of Hydraulic and Water Engineering (JHWE), Vol. 2, No. 2, 2025, 73-88.

Moghaddamnia, A., Ghafari, M., Piri, J., &
Han, D. (2009). Evaporation estimation
using support vector machines technique.
International Journal of Engineering and
Applied Sciences, 5(7), 415-423.

Shabani, S., Samadianfard, S., Sattari, M. T.,
Mosavi, A., Shamshirband, S., Kmet, T.,
& Varkonyi-Kéczy, A. R. (2020).
Modeling pan evaporation using
Gaussian process regression K-nearest
neighbors random forest and support
vector machines; comparative analysis.
Atmosphere, 11(1), 66.

Sudheer, K. P., Gosain, A. K., Mohana
Rangan, D., & Saheb, S. M. (2002).
Modelling evaporation using an artificial
neural network algorithm. Hydrological
Processes, 16(16), 3189-3202.

Tezel, G., & Buyukyildiz, M. (2016). Monthly
evaporation forecasting using artificial
neural networks and support vector
machines. Theoretical and applied
climatology, 124, 69-80.

Wu, L., Huang, G., Fan, J., Ma, X., Zhou, H.,
& Zeng, W. (2020). Hybrid extreme
learning machine with meta-heuristic
algorithms for monthly pan evaporation
prediction. Computers and electronics in
agriculture, 168, 105115.

Yang, Y., & Chui, T. F. M. (2021). Modeling
and interpreting hydrological responses
of sustainable urban drainage systems
with explainable machine learning
methods (Vol. 25).



