
Journal of Hydraulic and Water Engineering (JHWE), Vol. 2, NO. 2, 73-88 

 

* Corresponding author: ali.ebrahimi660231@gmail.com, Tel: +989124317506 

 

 

Comparative Evaluation of Machine Learning Algorithms for Evaporation 

Estimation in Shahrood Region 
 

Ali Ebrahimi1*, Abbas Pourdeilami2, Sina Khoshnevisan3, Mohammadreza Asli Charandabi4 

 
1* Ph.D., Civil Engineering, Shahrood University of Technology, Shahrood, Iran 
2 Assistant Professor, School of Engineering, Damghan University, Damghan, Iran 
2 Assistant Professor, School of Engineering, Damghan University, Damghan, Iran 
3 MSc Student, Civil Engineering, Shahrood University of Technology, Shahrood, Iran  

4 Ph.D. Student, Civil Engineering, Shahrood University of Technology, Shahrood, Iran 

 

Article Info  Abstract 

Article history: 

Received 11 June 2025 
Received in revised form 2 July 

2025 

Accepted 07 July 2025 

Published online 14 July 2025 

 

 

DOI:10.224/JHWE.2025.16384.1070 

 

 Accurate prediction of evaporation is critical for effective water resource 

management, particularly in arid and semi-arid regions. This research evaluates 

the performance of five machine learning algorithms — Decision Tree, K-Nearest 

Neighbors, Support Vector Regression, Random Forest, and Artificial Neural 

Network — in estimating monthly evaporation rates using meteorological data 

collected at the Shahrood Synoptic Station from 1992 to April 2025. The dataset 

includes key climatic parameters, including average temperature, wind speed, 

precipitation, and relative humidity. Model performance was assessed through four 

metrics: Mean Absolute Error, Coefficient of Determination, Kling-Gupta 

Efficiency, and Average Absolute Relative Deviation. Results indicate that the 

Random Forest model outperformed all others, achieving the lowest MAE of 19.94 

mm, the highest KGE of 0.973, and the lowest AARD of 0.521, reflecting superior 

accuracy and stability. The Artificial Neural Network model also demonstrated 

strong predictive capability, closely followed by Support Vector Regression. In 

contrast, simpler models such as Decision Trees and K-Nearest Neighbors 

performed comparatively poorly because they could not capture complex 

evaporation dynamics. Temporal analysis revealed that all models effectively 

captured seasonal evaporation patterns, with Random Forest and Artificial Neural 

Network most accurately tracing peak and trough fluctuations. The results 

demonstrate that machine learning models achieve strong predictive accuracy in 

evaporation estimation and provide a reliable approach for assessing evaporation 

and water loss. 
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1. Introduction 

Water is a fundamental resource for life, 

playing a crucial role in sustaining ecosystems, 

supporting human health, and driving 

economic activities. Agriculture, in particular, 

relies heavily on water for irrigation to ensure 

food production and global food security. 

Additionally, water holds substantial cultural 

and social significance, often playing a central 

role in community traditions and rituals (Wu et 

al., 2020). However, challenges such as climate 

change, water pollution, and poor water 

management practices threaten water 

availability and quality, emphasizing the need 

for sustainable water resource management to 

protect ecosystems and support human well-

being. Accurate evaporation estimation is 

critical for effective water resource 

management, agricultural planning, and 

hydrological modeling, especially in arid and 

semi-arid regions where water scarcity is 

prevalent (Gelete & Yaseen, 2024). 
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Evaporation represents a key component of the 

hydrologic cycle and has a substantial influence 

on the design and operation of irrigation 

systems, reservoir management, and climate 

studies (Shabani et al., 2020). Traditional 

empirical formulas often fall short of capturing 

the nonlinear and complex interactions among 

meteorological variables influencing 

evaporation, thereby necessitating robust, 

intelligent computational models (Deo et al., 

2016). 

Evaporation estimation has traditionally relied 

on empirical methods such as the Penman-

Monteith, Hargreaves-Samani, and Priestley-

Taylor equations. While effective under certain 

conditions, these models often fail to generalize 

across diverse climatic regions due to their 

sensitivity to input parameters and their 

linearity assumptions. (Dong et al., 2013). 

Consequently, there has been a shift toward 

data-driven approaches, particularly machine 

learning (ML), which can model the complex, 

nonlinear interactions among meteorological 

variables influencing evaporation. Support 

Vector Machines (SVMs) are among the 

earliest ML methods explored for evaporation 

modeling. Several studies confirmed the 

SVMs’ superiority over traditional regression 

techniques due to their robust performance 

under high-dimensional, nonlinear input 

conditions. (Deswal & Pal, 2008); 

(Moghaddamnia et al., 2009); (Yang & Chui, 

2021). Their variants, such as Least Squares 

SVM and ε-SVR, have also been evaluated 

favorably in multiple climatic contexts. (Tezel 

& Buyukyildiz, 2016). 

Artificial Neural Networks (ANNs) have been 

widely adopted for their ability to capture 

nonlinear patterns using input features such as 

temperature, humidity, wind speed, and solar 

radiation. These models consistently 

outperform traditional methods, especially 

when trained with sufficient data.  (Sudheer et 

al., 2002);  (Ali & Saraf, 2015), and newer 

training algorithms like Bayesian 

Regularization and Scaled Conjugate Gradient 

have been proposed to enhance ANN reliability 

(Aghelpour et al., 2022); (Falkenmark, 1995). 

Recent advances have led to the integration of 

ensemble models and hybrid techniques. For 

instance, Random Forests (RF), Gradient 

Boosting Machines (GBM), and Quantile 

Random Forests (QRF) have been shown to 

deliver competitive or superior accuracy 

compared to traditional ANN and SVM 

methods. (Shabani et al., 2020); (Al Sudani & 

Salem, 2022); (Gelete & Yaseen, 2024). 

Hybrid and ensemble models, such as extreme 

learning machines (ELMs), optimized using 

metaheuristic algorithms, have shown 

improved predictive accuracy. (Wu et al., 

2020); (Ehteram et al., 2024), and recent 

developments include the use of deep learning 

approaches such as LSTM and GRU, which are 

effective in capturing temporal dynamics (Kisi 

et al., 2022); (Latif, 2024); (Yang & Chui, 

2021). 

The soil dispersivity parameter (a), which is 

fundamental for modeling contaminant 

transport in porous media, is traditionally 

measured in situ through costly, time-

consuming experiments. In this study, three 

soft computing methods  the adaptive neuro-

fuzzy inference system (ANFIS), artificial 

neural network (ANN), and gene expression 

programming (GEP)  were employed to 

estimate a based on readily measurable 

physical soil and hydraulic variables: travel 

distance (L), mean grain size (D₅₀), soil bulk 

density (qb), and contaminant velocity (Vc). 

Model performance was evaluated using mean 

absolute error (MAE), root-mean-square error 

(RMSE), and coefficient of determination (R²). 

Results indicated that the ANN achieved the 

best performance with RMSE  =  0.00050 m and 

R² = 0.977, while the ANFIS (RMSE = 0.00062 

m, R² = 0.956) and GEP reached nearly 

comparable accuracy. All soft computing 

approaches significantly outperformed 

multiple linear regression (MLR), and 

sensitivity analysis revealed that travel distance 

(L) had the most significant and bulk density 

(qb) the least influence on soil dispersity 

(Emamgholizadeh et al., 2017). 

Predicting sesame seed yield with high 

accuracy is vital for effective breeding 
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strategies, yet conventional linear models often 

struggle to capture the underlying nonlinear 

dynamics of plant traits. In this study, we 

compared the performance of an artificial 

neural network (ANN) with a multiple linear 

regression (MLR) model using readily 

measurable morpho-phenological variables: 

days to full flowering, plant height, number of 

capsules per plant, 1,000-seed weight, and 

seeds per capsule,  based on field trial data. The 

ANN outperformed the MLR, achieving an 

RMSE of 0.339 t/ha and an R2  of 0.901, 

whereas the MLR showed an RMSE of 0.346 

t/ha and an R2  of 0.779. Sensitivity analysis 

further indicated that capsule count per plant 

was the strongest predictor of yield, while 

flowering time had the least effect 

(Emamgholizadeh et al., 2015).  

Estimating suspended sediment load in rivers is 

essential for hydraulic engineering, yet 

traditional sediment rating curves (SRCs) often 

exhibit low precision and high uncertainty. 

Leveraging daily discharge and sediment 

concentration records from the Kasilian and 

Telar stations over 1964–2014, this work 

assessed three AI-driven techniques—gene 

expression programming (GEP), artificial 

neural networks (ANN), and adaptive neuro-

fuzzy inference system (ANFIS)  against the 

SRC benchmark. The AI models consistently 

outperformed the SRC, delivering higher 

coefficients of determination (R²) and reduced 

mean absolute errors (MAE), with GEP 

achieving the top predictive accuracy. These 

findings underscore the potential of AI, 

particularly GEP, to markedly enhance 

suspended sediment load estimation for 

improved water resources planning and 

management (Emamgholizadeh & Demneh, 

2019). 

Extreme Learning Machines (ELMs) have 

emerged as a promising method for their fast 

learning speed and simplicity, especially when 

integrated with optimization algorithms like 

Flower Pollination Algorithm (FPA) and 

Whale Optimization Algorithm (WOA), 

significantly improving predictive accuracy 

(Wu et al., 2020). Further optimization has 

been achieved using hybrid metaheuristic 

strategies like Gaussian Mutation-Alpine 

Skiing Optimization, which enhance feature 

selection and temporal-spatial pattern 

extraction (Ehteram et al., 2024). In parallel, 

deep learning approaches, particularly Long 

Short-Term Memory (LSTM) and Gated 

Recurrent Unit (GRU) networks, have been 

shown to outperform traditional models due to 

their ability to capture long-term temporal 

dependencies in climatic data (Kisi et al., 

2022), (Latif, 2024); (Yang & Chui, 2021); 

(Ercin & Hoekstra, 2014). These models are 

especially advantageous in regions with strong 

seasonal patterns or limited availability of high-

quality data. Additionally, comparative studies 

remain crucial for evaluating the relative 

performance of these diverse methods. Several 

researchers have benchmarked multiple ML 

algorithms on identical datasets to identify 

optimal modeling strategies under different 

climatic and geographic conditions (Yang & 

Chui, 2021); (Amer & Farah, 2025); (Hashemi 

et al., 2018) 

One of the main challenges in hydraulic 

engineering is accurately estimating river 

suspended sediment load, and the traditional 

sediment rating curve (SRC) method is limited 

by low accuracy and high uncertainty. This 

study compares three artificial intelligence 

models ,  gene expression programming (GEP), 

artificial neural network (ANN), and adaptive 

neuro-fuzzy inference system (ANFIS)  with 

the SRC method for estimating daily suspended 

sediment load at two hydrometric stations in 

the Casilan (342.9 km²) and Talar (1,768.6 

km²) watersheds in northern Iran over the 

1964–2014 period. The results show that all 

three AI models outperform the SRC method, 

achieving higher coefficients of determination 

(R²) and lower mean absolute errors (MAE), 

with GEP yielding the highest R² and lowest 

MAE and therefore the best predictive 

performance. Thus, the application of AI 

techniques  ,especially GEP ,  can be an effective 

tool for improving the accuracy of suspended 

sediment load estimation in water resources 



Ebrahimi et al., 2025/ Journal of Hydraulic and Water Engineering (JHWE), Vol. 2, No. 2, 2025, 73-88.                                                                  76  

 

 

planning and management (Emamgholizadeh 

& Demneh, 2019). 

Predicting local scour depth around bridge 

piers is notoriously tricky due to the combined 

effects of pier geometry (length Lp, width Wp, 

attack angle θ), flow conditions (velocity V, 

depth y), and sediment characteristics (D50, 

D84). In this work, a multilayer perceptron 

(MLP) neural network  trained on both 

dimensional and dimensionless datasets via 

Buckingham’s π-theorem  was evaluated 

against multiple linear regression, nonlinear 

regression, and the Colorado State University 

empirical formula. The optimal MLP 

architecture, consisting of a single hidden layer 

with a hyperbolic tangent activation function, 

delivered outstanding performance: in the 

dimensional analysis, it achieved R2=0.99, 

RMSE = 0.01 m, MAE = 0.01 m; in the 

dimensionless form, R2=0.81, RMSE = 0.32 m, 

MAE = 0.32 m. By comparison, linear and 

nonlinear regressions produced 

R2≈0.58R^2\approx0.58–0.60 and RMSE ≈ 

0.20–0.42 m, while the CSU equation yielded 

R2=0.84  and RMSE=0.52 m. Overall, the MLP 

reduced prediction errors by over 70% relative 

to linear regression, 85.5% versus nonlinear 

regression, and 87.7% compared to the CSU 

model, demonstrating its clear advantage for 

accurate scour-depth estimation 

(Emamgholizadeh & Rahimi, 2022).  

These studies collectively highlight that no 

single ML algorithm is universally optimal; 

model performance depends heavily on input 

features, local climatic variability, and the 

quantity and quality of training data. Therefore, 

a systematic, comparative evaluation using 

uniform performance metrics is essential to 

identify context-specific best practices for 

evaporation estimation (Hoekstra & 

Chapagain, 2008). 

This research focuses on the arid region of 

Shahrood to examine and evaluate the 

performance of machine learning models in 

estimating evaporation. For this purpose, it 

utilizes meteorological and climatological data 

collected by the Shahrood synoptic station. 

These data include parameters such as average 

temperature, average relative humidity, 

average wind speed, and total monthly 

Precipitation, which help estimate evaporation. 

Additionally, other parameters, such as average 

maximum and minimum temperatures, 

minimum and maximum relative humidity, are 

considered to improve model accuracy. To 

evaluate the models' performance, consistent 

and valid metrics such as mean squared error, 

coefficient of determination, and mean absolute 

error are used. The ultimate goal of this study 

is to introduce and select the most appropriate 

machine learning model for accurately 

estimating evaporation under the specific 

climatic conditions of the Shahrood region. 

This selection will be based on the models' 

performance in predicting evaporation and 

their alignment with the region's local and 

climatic conditions. The results of this study 

can assist water resource managers in better 

planning for water resources in arid areas and 

in preventing excessive evaporation. 

 

2. Materials and methods 

2.1. Study area 

Shahrood is one of the key cities in Semnan 

Province, located in the northern part of the 

province near Iran's central desert. Situated 

approximately 350 kilometers northeast of 

Tehran, it lies at the border of North Khorasan 

and Yazd provinces. Shahrood’s geographic 

position provides convenient connectivity to 

other regions of the country via major 

highways and railway networks. The climate of 

Shahrood is predominantly arid to semi-arid, 

characterized by hot, dry summers and cold, 

dry winters. These climatic conditions 

significantly influence the area's natural 

resources, agriculture, and economic activities. 

Annual precipitation is limited, averaging less 

than 200 millimeters, which imposes 

considerable constraints on agriculture and 

water availability. The region also experiences 

seasonal monsoon winds and dust storms 

during specific periods, further shaping its 

atmospheric dynamics. Due to these 

environmental factors, agricultural practices in 

Shahrood are primarily focused on drought-



Ebrahimi et al., 2025/ Journal of Hydraulic and Water Engineering (JHWE), Vol. 2, No. 2, 2025, 73-88.                                                                  77  

 

 

resistant crops such as wheat, barley, and 

cotton. However, in some surrounding 

mountainous areas, milder temperatures allow 

for the cultivation of a wider variety of 

horticultural and field crops. Despite the 

challenging climate, Shahrood has sustained 

economic and industrial growth, supported by 

its rich mineral resources and well-developed 

transportation infrastructure. The study area is 

illustrated in Figure 1. 

 
Figure 1.  Study area: Geographic location of Shahrood Synoptic Station. 

 

2.2. Data Collection 

The dataset used in this study comprises 

meteorological data collected at the Shahrood 

Synoptic Station from 1992 to April 2025. The 

data are recorded monthly, providing 

comprehensive coverage over more than three 

decades. The climatic variables incorporated in 

this dataset are shown in Table 1. 

 

2.3. Networks 
2.3.1. Decision Tree 

The Decision Tree algorithm is a machine 

learning approach commonly employed for 

regression tasks. It operates by recursively 

partitioning the input feature space, 

progressively dividing the data into smaller 

subsets to form a hierarchical tree-like 

structure. At each node of the tree, a specific 

feature is selected as the decision criterion, and 

the data is split into branches based on a 

threshold for that feature. The choice of the 

optimal feature and its corresponding threshold 

is typically guided by metrics such as variance 

reduction or minimization of mean squared 

error. This recursive process continues until a 

predefined stopping condition is met, such as 

reaching a minimum number of samples in a 

node or achieving a satisfactory level of 

variance reduction. For prediction, the output 

value for a new instance is estimated by 

averaging the target values of training samples 

within the corresponding leaf node. Notably, 

decision trees are invariant to feature scaling, 

eliminating the need for standardizing input 

data. Owing to their high interpretability and 

ability to capture nonlinear relationships 
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among features, decision trees are widely 

utilized in various regression problems. 

 
Table 1. Description of Climatic Parameters Used in 

the research 

Parameter Name Description Unit 

Average Temperature 
Monthly average air 

temperature 
°C 

Average Wind Speed 
Monthly average wind 

speed 
m/s 

Average Maximum 

Temperature 

Monthly average of daily 

maxima 
°C 

Average Minimum 

Temperature 

Monthly average of daily 

minima 
°C 

Total Monthly 

Precipitation 

Total precipitation in the 

month 
mm 

Minimum Relative 

Humidity 

Minimum relative 

humidity in month 
% 

Maximum Relative 

Humidity 

Maximum relative 

humidity in month 
% 

Average Relative 

Humidity 

Monthly average relative 

humidity 
% 

Total Monthly 

Evaporation 

Total evaporation in the 

month 
mm 

 
2.3.2. KNN 

The K-Nearest Neighbors (KNN) algorithm is 

an instance-based learning method used for 

regression tasks that relies on the similarity 

between data points. In this approach, the 

parameter k—representing the number of 

neighbors considered during prediction—is 

first specified. The algorithm then computes 

the distance between the new sample and each 

instance in the training set, typically using the 

Euclidean distance metric. Once the k nearest 

neighbors are identified, the predicted value for 

the new input is estimated by averaging the 

target values of these neighbors. Due to its 

sensitivity to the scale of input features, KNN 

requires data standardization to ensure all 

features contribute equally to distance 

calculations and to avoid biases caused by 

varying feature magnitudes. Owing to its non-

parametric nature and reliance on local 

instance-based estimation, KNN is particularly 

effective for analyzing datasets with complex 

or unknown distributions (El Bilali et al., 

2022). 

 
2.3.3. SVR 

Support Vector Regression (SVR) is a machine 

learning technique rooted in Support Vector 

Machine (SVM) theory, designed to model 

complex nonlinear relationships between 

variables in regression problems. Rather than 

minimizing the absolute or squared error as in 

traditional regression approaches, SVR aims to 

identify an optimal hyperplane that predicts 

target values within a specified margin of 

tolerance, denoted by epsilon (ε). The objective 

is to construct a function that fits the data as 

accurately as possible while allowing for a 

predefined error margin, thereby reducing 

sensitivity to outliers. To capture nonlinear 

patterns, SVR maps the input data into a 

higher-dimensional feature space using kernel 

functions—such as linear, polynomial, or radial 

basis function (RBF) kernels. Within this 

transformed space, the algorithm defines two 

parallel hyperplanes that enclose the majority 

of the training data. Only the data points that 

fall outside this epsilon-insensitive region — 

known as support vectors — directly influence 

the final model. The optimization process in 

SVR involves minimizing a cost function that 

penalizes deviations beyond the epsilon-

margin, controlled by the regularization 

parameter C. This parameter balances the 

trade-off between model complexity and the 

tolerance for errors. The proper tuning of C and 

ε is crucial for achieving a model that 

generalizes well, avoiding both overfitting and 

underfitting. 

 
2.3.4. Random Forest 

Random Forest is an ensemble-based machine 

learning algorithm that constructs a collection 

of decision trees to perform predictions. Each 

tree is trained independently using a randomly 

selected subset of the data and features, and the 

final output is determined by aggregating the 

predictions of all trees—typically through 

averaging for regression tasks or majority 

voting for classification. This method is 

particularly effective in reducing the risk of 

overfitting and enhancing predictive accuracy, 

especially in complex or noisy datasets. One of 
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the core strengths of Random Forest lies in its 

stochastic nature: both the sampling of training 

instances (via bootstrapping) and the selection 

of features at each split are randomized. This 

diversity among individual trees contributes to 

a more robust and generalizable model. 

Furthermore, Random Forest offers advanced 

capabilities, such as feature importance 

estimation, which provides valuable insights 

into each variable's relative contribution to the 

predictive task. The model’s performance is 

influenced by key hyperparameters, notably the 

number of trees (n_estimators) and the 

maximum depth of each tree (max_depth), 

which can be tuned to balance model 

complexity and accuracy. Owing to its 

flexibility and resilience to outliers and high-

dimensional data, Random Forest is widely 

applied in both regression and classification 

problems across various domains. 

 
2.3.5. ANN (Artificial Neural Network) 

Artificial Neural Networks (ANNs) are among 

the widely used methods in machine learning. 

These models consist of interconnected layers 

of computational units, where each unit 

receives a set of weighted inputs, processes 

them using an activation function, and passes 

the output to the subsequent layer.  ANNs can 

learn complex patterns and nonlinear 

relationships in data by adjusting connection 

weights through optimization algorithms such 

as gradient descent and backpropagation. This 

learning process minimizes the prediction error 

on training data and enables the model to 

generalize to unseen samples.  Key advantages 

of ANNs include their structural flexibility, 

adaptability to high-dimensional and large-

scale datasets, and strong predictive power. 

They have been successfully applied in various 

tasks such as regression, classification, pattern 

recognition, and time series forecasting. 

 

2.4. Evaluation Metrics 
2.4.1. Mean Absolute Error (MAE) 

Mean Absolute Error (MAE) is a metric that 

quantifies the average prediction error of a 

model by calculating the mean of the absolute 

differences between the predicted and actual 

values. This metric represents the average 

absolute distance between predictions and 

actual values, with units consistent with the 

target variable, making its interpretation 

straightforward and intuitive. The MAE value 

indicates, on average, how far the model’s 

predictions deviate from the actual 

observations. It is computed using equation (1):  

𝑀𝐴𝐸 =  
1

𝑛
 ∑| 𝑦𝑖̂ −  𝑦 |

𝑛

𝑖 =1

 (1) 

 

where 𝑦 denotes the actual values, 𝑦𝑖̂ the 

predicted values, and 𝑛 the number of samples. 

 
2.4.2. The Coefficient of Determination (R2) 

The Coefficient of Determination (R²) is a 

metric that indicates how well a predictive 

model fits the data and explains the variability 

of the target variable. It represents the 

proportion of the variance in the observed data 

that is accounted for by the model’s 

predictions. The value of R² ranges from 0 to 1, 

with values closer to 1 indicating a better fit and 

higher predictive accuracy. An R² equal to zero 

indicates that the model fails to explain any of 

the variation in the data. This metric is 

calculated using equation (2): 

𝑅2 =  1 − 
∑  ( 𝑦 − 𝑦𝑖 ̂)

2𝑛
𝑖=1

∑  ( 𝑦 − 𝑦̅ )2𝑛
𝑖=1

 (2) 

where 𝑦 denotes the actual values, 𝑦𝑖̂ the 

predicted values, and 𝑦̅ the mean of the actual 

values. 

 
2.4.3. R-Square Value (R²) 

The Kling-Gupta Efficiency (KGE) is a widely 

used performance metric for evaluating 

predictive models, especially in hydrology and 

environmental engineering. This index 

provides a comprehensive assessment by 

integrating three key components: the 

correlation between observed and predicted 

values, the ratio of their means, and the ratio of 

their standard deviations. The KGE value 

ranges from negative infinity to 1, where 1 

indicates perfect agreement between 

predictions and observations. Unlike traditional 

metrics such as R² and NSE, the main 



Ebrahimi et al., 2025/ Journal of Hydraulic and Water Engineering (JHWE), Vol. 2, No. 2, 2025, 73-88.                                                                  80  

 

 

advantage of KGE lies in its simultaneous 

consideration of correlation, bias, and 

variability, offering a more balanced and 

insightful evaluation of model performance. 

The KGE is calculated using equation (3): 
KGE 
=  1 

− √ ( r −  1 )2 +  ( 
μŷ

μy
 −  1 )2  +  ( 

σŷ

σy
 −  1 )2 

(3) 

where 𝑟 is the Pearson correlation coefficient 

between the predicted values 𝑦̂ and the 

observed values 𝑦, 𝜇 denotes the mean, and 𝜎 

represents the standard deviation of the 

respective datasets. 

 
2.4.4. Average Absolute Relative Deviation 

(AARD) 

AARD (Average Absolute Relative Deviation) 

is a metric that quantifies a model's prediction 

error relative to actual values, expressed as a 

percentage. This indicator calculates the 

average absolute difference between predicted 

and observed values relative to the observed 

values, making it convenient for comparing the 

accuracy of different models or datasets. A 

lower AARD value indicates higher predictive 

accuracy. It is calculated using equations (4) 

and (5): 

𝐴𝑅𝐷𝑖  =  
( 𝑦 − 𝑦𝑖)

𝑦𝑖

  (4) 

𝐴𝐴𝑅𝐷 =  
1

𝑁
 ∑| 𝐴𝑅𝐷𝑖 |

𝑁

𝑖 =1

 (5) 

 

In the equation 𝑦 is the observed value, 𝑦𝑖 is the 

predicted value, and 𝑁 is the number of 

samples. 

 

 

 

 

 

 

3. Results and Discussion 
In this research, five machine learning models 

Decision Tree, K-Nearest Neighbors (KNN), 

Support Vector Regression (SVR), Random 

Forest, and Artificial Neural Network (ANN) 

were evaluated for evaporation prediction 

using four performance metrics: Mean 

Absolute Error (MAE), coefficient of 

determination (R²), Kling–Gupta Efficiency 

(KGE), and Average Absolute Relative 

Deviation (AARD). As shown in Table 2, the 

Decision Tree performed worst, with an MAE 

of 25.82, an R² of 0.945, a KGE of 0.963, and 

an AARD of 0.895. KNN also performed 

relatively poorly, likely due to its high 

sensitivity to data noise, yielding an MAE of 

22.45, an R² of 0.959, a KGE of 0.936, and an 

AARD of 1.098. SVR offered a more balanced 

trade-off between accuracy and robustness, 

with an MAE of 22.09, an R² of 0.957, a KGE 

of 0.960, and an AARD of 1.042.  The Artificial 

Neural Network (ANN) demonstrated solid 

predictive capability, achieving an R² of 0.961, 

an MAE of 22.60, and an AARD of 0.627. 

These results suggest that the ANN is well-

suited to capturing the complex patterns of 

evaporation variability. However, it fell 

slightly behind the Random Forest in 

minimizing both absolute and relative error. 

Analysis of Table 1 shows that the Random 

Forest model achieved the best overall 

performance, with the lowest MAE (19.94), an 

R² of 0.957, the highest KGE of 0.973, and the 

lowest AARD of 0.521. This superiority 

reflects its ability to aggregate multiple 

decision trees, thereby reducing variance and 

minimizing error. Based on the results, 

Random Forest achieved the highest accuracy 

and stability for evaporation prediction, while 

ANN and SVR also performed well. In 

contrast, simpler models such as Decision 

Trees and KNN struggled to capture the 

underlying complexity of the evaporation data, 

leading to higher prediction errors. 
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Table 2. Comparative performance metrics of the machine learning models 

Model MAE (mm) R2 KGE AARD 

Decision Tree 25.82 0.945 0.963 0.895 

KNN 22.45 0.959 0.936 1.098 

SVR 22.09 0.957 0.960 1.042 

Random Forest 19.94 0.957 0.973 0.521 

ANN  22.60 0.961 0.958 0.627 

As illustrated in Figure 2, which presents the 

time series of evaporation predictions, all 

models successfully capture the seasonal 

pattern of evaporation  with prominent peaks 

typically occurring in June and September, and 

troughs observed in spring and autumn. 

However, the precision with which each model 

tracks these peaks and troughs varies.  The 

decision tree model frequently underestimates 

peak evaporation values, especially during 

high-evaporation periods such as the summers 

of 1997 and 2006. In contrast, the KNN model 

tends to overestimate peaks in certain years, for 

instance, in the summers of 1995 and 2002. The 

SVR model generally predicts peak values 

slightly lower than observed and shows notable 

errors during low-evaporation periods, such as 

the early spring of 2003 or the autumn of 2015.  

The random forest and artificial neural network 

(represented by dark blue and green lines, 

respectively) tend to follow the actual 

observations (light blue line) more closely, 

particularly in capturing intense evaporation 

peaks in 2005, 2010, and 2018. Nevertheless, 

RF occasionally exaggerates peak values  ,as in 

summer 2009, while ANN sometimes slightly 

overestimates very low evaporation levels, as 

in autumn 2014.  Overall, the most significant 

deviations occur during extreme peaks and 

troughs, where RF and ANN have shown 

superior performance in minimizing tracking 

errors. Both models effectively preserve the 

seasonal structure of evaporation dynamics and 

closely follow the timing and magnitude of 

fluctuations. Still, when compared directly, RF 

shows a slightly higher tendency to overpredict 

peaks, whereas ANN exhibits relatively more 

error in estimating sharp declines. 

Figure 3 illustrates the scatter plots of predicted 

versus observed evaporation values for each 

model, providing a visual assessment of their 

accuracy and error patterns.  The dispersion and 

alignment of points relative to the 45-degree 

reference line (the ideal fit) vary significantly 

across models. The predictions from the 

Random Forest and Artificial Neural Network 

models exhibit the closest clustering around 

this line, indicating minimal absolute error and 

the highest correlation with observed data. 

Both models demonstrate superior accuracy not 

only at peak evaporation levels but also across 

lower and moderate ranges, with fewer 

instances of under- or overestimation than the 

others.  In contrast, the Decision Tree model 

shows the most incredible spread, suggesting 

weaker predictive performance. The KNN and 

SVR models fall somewhere in between. At the 

same time, they maintain relatively strong 

correlations with actual values; however, their 

predictions exhibit more scatter, particularly 

across certain evaporation intervals,  than those 

of RF and ANN.  This visual analysis reinforces 

the earlier findings, confirming that Random 

Forests and Artificial Neural Networks have 

the greatest capacity to capture evaporation 

variability accurately. Simpler models, such as 

the Decision Tree, struggle to capture the data's 

complexity and consequently produce higher 

errors. 

Figure 4 presents a bar chart comparing the 

predicted evaporation values of five machine 

learning models against actual observations 

across a range of sampled dates.  The Random 

Forest and Artificial Neural Network models 

exhibit the least deviation from the observed 

values. Notably, they closely align with actual 

evaporation rates during both peak periods and 

sharp declines. In contrast, the Decision Tree 

and K-Nearest Neighbors models show greater 

variability in their predictions and, in many 
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cases, particularly during the middle of the 

sampling range and at very low evaporation 

levels, tend to overestimate or underestimate 

the values systematically. Although the SVR 

model demonstrates a reasonable correlation 

with observed data, it tends to underestimate 

peak evaporation events. This performance 

pattern underscores the superior ability of the 

Random Forest and ANN models to accurately 

capture evaporation fluctuations and maintain 

predictive stability across variable conditions. 

These findings suggest that future research and 

practical applications involving evaporation 

prediction should prioritize the use of these two 

models. 

 

 
Figure 2. Comparison of predicted evaporation values by five machine learning models with actual observations 

over a range of sampled dates. 

 

 
Figure 3. Scatter plots of predicted versus actual evaporation values for five machine learning models. The 

proximity of points to the 1:1 line indicates the accuracy of the prediction. 
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Figure 4. Comparison of predicted evaporation values by five machine learning models with actual observations.

 

4. Conclusions 

This research comprehensively evaluated the 

performance of five widely used machine 

learning algorithms: Decision Tree, K-

Nearest Neighbors (KNN), Support Vector 

Regression (SVR), Random Forest, and 

Artificial Neural Network (ANN) in 

predicting monthly evaporation rates in the 

Shahrood region using long-term 

meteorological data from the Shahrood 

Synoptic Station spanning 1992 to April 2025. 

Evaporation is a critical component of the 

hydrological cycle, especially in arid and 

semi-arid regions like Shahrood, where 

excessive evaporation can lead to significant 

water loss and exacerbate water scarcity 

issues. Accurate estimation of evaporation is 

essential for effective water resource 

management, agricultural planning, and 

climate impact mitigation in such vulnerable 

environments.  However, direct measurement 

of evaporation can be challenging. Synoptic 

stations sometimes have missing evaporation 
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data for certain months, and in some cases, 

evaporation measurements have not been 

recorded for recent years. Moreover, in some 

regions, evaporation data might be completely 

unavailable due to the lack of measurement 

infrastructure. These limitations motivate the 

use of advanced machine learning algorithms 

to predict evaporation from other 

meteorological variables, enabling reliable 

estimates even in the absence of direct 

observations. The dataset, comprising diverse 

climatic parameters such as temperature, wind 

speed, precipitation, relative humidity, and 

evaporation, enabled an in-depth assessment 

of model performance under real-world 

conditions. Predictive accuracy and 

robustness, achieving the lowest Mean 

Absolute Error (MAE), highest Kling-Gupta 

Efficiency (KGE), and lowest Average 

Absolute Relative Deviation (AARD). The 

Artificial Neural Network also showed strong 

performance, slightly trailing Random Forest 

in overall metrics but excelling in modeling 

intricate evaporation dynamics. Conversely, 

simpler models such as Decision Trees and 

KNN exhibited limitations in handling the 

complexity and variability of evaporation 

processes, leading to higher prediction errors 

and less stable outputs. Support Vector 

Regression achieved balanced performance 

but did not surpass the ensemble and neural 

network approaches. The temporal analysis 

revealed that all models captured the seasonal 

patterns of evaporation, with peaks generally 

occurring during summer months and troughs 

in spring and autumn. However, Random 

Forest and ANN more precisely tracked these 

fluctuations, including extreme peaks and 

sharp declines, underscoring their suitability 

for hydrological and climatic applications in 

semi-arid regions such as Shahrood. For 

future research, it is recommended to explore 

advanced deep learning techniques, such as 

Long Short-Term Memory (LSTM), which 

have shown great potential for capturing 

complex temporal dependencies and 

nonlinear patterns in hydrological time series, 

such as evaporation. Additionally, expanding 

the application of these machine learning 

models to other semi-arid and arid regions 

lacking direct evaporation measurements 

would provide valuable insights into their 

generalizability and robustness across 

different climatic and geographic conditions. 

Furthermore, a comparative analysis between 

traditional evaporation estimation methods 

and state-of-the-art machine learning 

approaches would help clarify the advantages 

and limitations of each, guiding more 

effective selection of prediction tools for 

water resource management. Such efforts will 

ultimately contribute to more accurate and 

reliable evaporation forecasting, essential for 

optimizing water use and addressing scarcity 

challenges in vulnerable regions.  
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