Stability Analysis and Sensor-Based Monitoring of Earthen Dams in Semi-Arid Regions: A Case Study of Daroongar Dam, Iran

Document Type : Original Article

Authors

1 Civil Engineering, Water and Hydraulic Structures, Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad, Iran.

2 Department of Water Engineering, University of Birjand, Birjand, Iran.

3 Civil Engineering Department, Mashhad Branch, Islamic Azad University, Mashhad, Iran.

10.22044/jhwe.2025.16080.1061

Abstract

This study presents a comprehensive stability assessment of the Daroongar earth dam in Iran's semi-arid region through a three-year monitoring program (2019-2022) combining precision instrumentation and finite element modeling (Plaxis 8.6). Field data from 19 embankment piezometers, 10 electric piezometers, 28 standpipe piezometers, and 13 total pressure cells installed in critical sections were systematically analyzed. Comparative analysis of key parameters revealed significant discrepancies between field measurements and numerical simulations: total stress showed 22% average deviation, pore pressure in the dam body exhibited 37.9% mismatch, while foundation pore pressure demonstrated a 35% discrepancy (Δ = 304.3 kN/m², p<0.05), primarily attributed to instrument blockages. Arching effects analysis indicated minor 0.032 unit variations (95% CI: -0.3-0.37), within acceptable safety limits. The research highlights the importance of implementing shorter monitoring intervals and incorporating thermometric methods for enhanced seepage detection. Statistical validation via SPSS emphasized the need for constitutive model recalibration, particularly for soil-specific gravity and shear strength parameters, to reduce simulation-field measurement gaps. Practical recommendations include proactive maintenance protocols addressing instrument blockages and optimized drainage system designs. These findings provide actionable insights for improving safety and longevity of earth dams in semi-arid climates, demonstrating the critical synergy between advanced numerical modeling and robust field instrumentation systems. The study contributes to better understanding of earth dam behavior under operational conditions while proposing concrete measures for enhanced monitoring accuracy.

Keywords


Salin, J., Balayssac, J. P., & Garnier, V. (2018). Introduction. In J. P. Balayssac & V. Garnier (Eds.), Non-destructive testing and evaluation of civil engineering structures (pp. 1–20). Elsevier.
 
Riveiro, B., & Solla, M. (Eds.). (2016). Non-destructive techniques for the evaluation of structures and infrastructure. CRC Press.
 
Rana, N. M., Ghahramani, N., Evans, S. G., Small, A., Skermer, N., McDougall, S., & Take, W. A. (2022). Global magnitude-frequency statistics of the failures and impacts of large water-retention dams and mine tailings impoundments. Earth-Science Reviews, 232, 104144.‏
 
Bashar, N. A. M., Zainol, M. R. R. M. A., Aziz, M. S. A., Mazlan, A. Z. A., & Zawawi, M. H. (2023, March). Dam safety: Highlighted issues and reliable assessment for the sustainable dam infrastructure. In International Conference on Dam Safety Management and Engineering (pp. 871–880). Springer Nature Singapore. 
 
Deneale, S. T., Baecher, G. B., Stewart, K. M., Smith, E. D., & Watson, D. B. (2019). Current state-of-practice in dam safety risk assessment (No. ORNL/TM-2019/1069). Oak Ridge National Laboratory (ORNL).
 
Mazele, O., & Amoah, C. (2022). The causes of poor infrastructure management and maintenance in South African municipalities. Property Management, 40(2), 192-206.
Hui, S., Charlebois, L., & Sun, C. (2018). Real-time monitoring for structural health, public safety, and risk management of mine tailings dams. Canadian Journal of Earth Sciences55(3), 221-229.‏
 
Liu, H. C., Zhang, L. J., Ping, Y. J., & Wang, L. (2020). Failure mode and effects analysis for proactive healthcare risk evaluation: a systematic literature review. Journal of evaluation in clinical practice, 26(4), 1320-1337.‏
 
Cong, Y., & Inazumi, S. (2024). Integration of innovative city technologies with advanced predictive analytics for geotechnical investigations. Smart Cities7(3), 1089-1108.‏
 
Cejka, F., Beneš, V., Glac, F., & Boukalova, Z. (2018). Monitoring of seepages in earthen dams and levees. International Journal of Environmental Impacts1(3), 267-278.‏
 
Jastrzębska, M. (2021). Modern displacement measuring systems used in geotechnical laboratories: Advantages and disadvantages. Sensors21(12), 4139.‏
 
Van Stan, J. T., Martin, K., Friesen, J., Jarvis, M. T., Lundquist, J. D., & Levia, D. F. (2013). Evaluation of an instrumental method to reduce error in canopy water storage estimates via mechanical displacement. Water Resources Research49(1), 54-63.‏
 
Adamo, N., Al-Ansari, N., Sissakian, V., Laue, J., & Knutsson, S. (2021). Dam safety: Use of instrumentation in dams. Journal of Earth Sciences and Geotechnical Engineering11(1), 145-202.‏
 
Wu, M., Ye, Y., Hu, N., Wang, Q., & Tan, W. (2023). Scientometric analysis of the evolution of research on tailings dam failure disasters. Environmental Science and Pollution Research30(6), 13945-13959.‏
 
Salazar, F., Morán, R., Toledo, M. Á., & Oñate, E. (2017). Data-based models for predicting dam behavior: a review and some methodological considerations. Archives of computational methods in engineering24, 1-21.‏
 
Wang, T., Li, Z., Ge, W., Zhang, Y., Jiao, Y., Zhang, H., ... & van Gelder, P. (2023). Risk assessment methods of cascade reservoir dams: a review and reflection. Natural Hazards115(2), 1601-1622.‏
 
Soltaninejad, S., Abdollahi, M. S., Bp, N., Marandi, S. M., Abdollahi, M., & Abdollahi, S. (2025). Toward Sustainable Infrastructure: Advanced Hazard Prediction and Geotechnical Risk Management in the Jiroft Dam Project, Iran. Sustainability17(4), 1465.‏
 
Xiong, M., & Huang, Y. (2019). Novel perspective of seismic performance-based evaluation and design for resilient and sustainable slope engineering. Engineering geology262, 105356.‏
 
Márquez López, B. (2023). Study of Finite Elements-based reliability and maintenance algorithmic methodologies analysis applied to aircraft structures and design optimization (Bachelor's thesis, Universitat Politècnica de Catalunya).‏
 
Chen, S. H., & Chen, S. H. (2015). Operation and Maintenance of Hydraulic Structures. Hydraulic Structures, 967-1029.‏
 
Lindsey, J., Edwards, D., Keeter, A., Payne, T., & Malloy, R. (1986). Instrumentation automation for concrete structures: Report 1, Instrumentation automation techniques. Wyle Labs.
 
Athani, S. S., Shivamanth, S., Solanki, C. H., & Dodagoudar, G. R. (2015). Seepage and stability analyses of earth dam using finite element method. Aquatic Procedia, 4, 876–883. 
 
Mouyeaux, A., Carvajal, C., Bressolette, P., Peyras, L., Breul, P., & Bacconnet, C. (2018). Probabilistic stability analysis of an earth dam by stochastic finite element method based on field data. Computers and Geotechnics, 101, 34-47.
 
Farias, M. M. d., & Cordão Neto, M. P. (2010). Advanced numerical simulation of collapsible earth dams. Canadian Geotechnical Journal, 47(12), 1351–1364.
 
Wang, G., Tian, S., Hu, B., Kong, X., & Chen, J. (2020). An experimental study on tailings deposition characteristics and variation of tailings dam saturation line. Geomechanics and Engineering, 23(1), 85-92.
 
Huang, X., Zheng, D., Yang, M., Gu, H., Su, H., Cui, X., & Cao, W. (2018). Displacement aging component-based stability analysis for the concrete dam. Geomechanics and Engineering, 14(3), 241-246.
 
Guo, X., Dias, D., & Pan, Q. (2019). Probabilistic stability analysis of an embankment dam considering soil spatial variability. Computers and Geotechnics, 113, 93-103.