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 The electroperoxone  (EPO) process, which integrates ozonation and 

electrochemical hydrogen peroxide generation, has attracted attention as an 

efficient advanced oxidation technology for treating recalcitrant pollutants. This 

study investigates the application of EPO for the removal of organic dye from 

synthetic wastewater using a two-stage analytical framework. In the first stage, a 

series of systematic batch experiments were conducted to investigate the effects 

of key operational parameters initial pH, applied current, ozone dosage, and 

reaction time on decolorization efficiency. In the second stage, predictive models 

were developed using machine learning algorithms  Support Vector Regression 

(SVR) and Random Forest (RF)  to capture the process's complex, nonlinear 

behavior. The Random Forest model outperformed others, achieving an R² value 

above 0.823 and demonstrating superior accuracy in predicting removal 

efficiency. Sensitivity analysis revealed ozone dosage and applied current as the 

most influential factors. These results highlight the potential of combining 

experimental optimization with robust data-driven modeling to enhance the design 

and scalability of advanced oxidation processes in wastewater treatment. 
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1. Introduction 

In recent decades, the escalating contamination 

of water resources by a myriad of industrial 

chemicals and toxic substances has emerged as 

a paramount global challenge. (Deogaonkar-

Baride et al., 2025; Firozjaee et al., 2020). The 

discharge of inadequately treated effluents 

from various sectors, particularly the textile 

industry, introduces a complex mixture of 

hazardous compounds into aquatic ecosystems, 

jeopardizing both environmental integrity and 

public health (Bopape et al., 2024). 

Azo dyes are among the most persistent organic 

pollutants in aquatic environments, posing 

significant environmental and health concerns 

due to their stability and resistance to 

conventional degradation processes (Srivatsav, 

Devi et al.). Methyl orange (MO), a widely 

used azo dye, is particularly recalcitrant under 

natural conditions, leading to long-term 

accumulation in water bodies and potential 

toxic effects on aquatic ecosystems. The 

presence of such pollutants highlights the need 

for efficient and sustainable removal 

technologies that can effectively degrade these 

contaminants into less harmful 

byproducts(Tamer et al., 2024; Tingting et al., 

2015). 
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Advanced oxidation processes (AOPs) have 

been extensively investigated for the 

degradation of recalcitrant organic pollutants 

due to their ability to generate highly reactive 

species that facilitate the breakdown of 

complex molecular structures(Abdi et al., 

2025; Chaturvedi et al., 2022; Shahamat et al., 

2022). Among these, the electroperoxone 

(EPO) process, which integrates 

electrochemical oxidation with ozonation, has 

emerged as a promising technique for removing 

azo dyes from wastewater(Chen et al., 2023). 

The effectiveness of this process is influenced 

by several operational parameters, including 

electrolyte concentration, pH, ozone dosage, 

and initial pollutant concentration, which 

collectively determine its overall 

performance(Chen et al., 2023; Shokri & 

Sanavi Fard, 2022). 

Despite the demonstrated efficiency of AOPs, 

optimizing their operational conditions remains 

challenging due to complex interactions among 

process variables. Traditional experimental 

approaches for process optimization are often 

time-intensive and resource-demanding, 

limiting their practical applicability in large-

scale treatment systems(Liu et al., 2024). In 

recent years, machine learning (ML) 

techniques have been increasingly applied to 

environmental modeling, offering a data-driven 

approach to process optimization and 

predictive analysis. Various ML algorithms, 

including support vector regression (SVR) and 

random forest (RF) have been employed to 

enhance the accuracy of pollutant degradation 

predictions and provide valuable insights into 

process dynamics(Fahimi Bandpey et al., 2024; 

Lateef et al., 2022; Moosavi et al., 2021; 

Saghafi et al., 2024). 

In this study, we investigate the removal of MO 

using the EPO process and employ ML models 

to predict and optimize its degradation 

efficiency. The predictive performance of 

different ML algorithms is evaluated based on 

standard statistical metrics, including mean 

absolute error (MAE) and the coefficient of 

determination (R²). By integrating 

experimental findings with data-driven 

modeling, this study aims to provide a robust 

framework for improving AOPs and advancing 

sustainable water treatment technologies. 

 

2. Materials and Methods 

2.1. Experimental 
2.1.1. Materials 

Methyl orange (MO, 𝐶₁₄𝐻₁₄𝑁₃𝑁𝑎𝑂₃𝑆), used 

as the model organic contaminant in this study, 

was obtained from Merck Co. (Germany) with 

a purity greater than 99%. Sodium sulfate 

(𝑁𝑎₂𝑆𝑂₄, Merck) was used as the supporting 

electrolyte to provide ionic conductivity during 

electrochemical treatment. pH adjustments 

were performed using 37% hydrochloric acid 

(HCl) and sodium hydroxide (NaOH), both 

purchased from Merck. All solutions were 

prepared using deionized water to eliminate the 

influence of background ions. Graphite plates 

(99.9% purity) were used as the cathodic 

electrode material due to their high electrical 

conductivity, chemical stability, and cost-

effectiveness. 

 
2.1.2. Experimental Set-up  

A schematic of the experimental setup is 

presented in Fig. 1a. The system consists of an 

oxygen capsule (1), an ozone generator (2), a 

programmable DC power supply (3), a 

magnetic stirrer (4), and a borosilicate glass 

reactor (5) with an effective working volume of 

75 mL. Oxygen gas was passed through the 

ozone generator, where it was partially 

converted to ozone. The resulting ozone–

oxygen mixture was then introduced directly 

into the reactor to enhance the oxidative 

degradation of the target pollutant. 

The internal structure of the reactor is shown in 

Fig. 1b. Two flat electrodes were positioned 

vertically and 1 cm apart inside the reactor: a 

graphite plate (3 × 4 cm²) served as the cathode, 

and a steel sheet of the same size functioned as 

the anode. Before each experiment, the 

electrodes were polished with fine sandpaper, 

immersed in 10% nitric acid for chemical 

cleaning, rinsed with deionized water, and 

dried at room temperature to ensure consistent 

surface conditions. 

The reactor was placed on a magnetic stirrer 

operating at 500 rpm to ensure continuous 
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mixing of the electrolyte and uniform 

distribution of oxidants. A constant electric 

current was applied via the DC power supply. 

All experiments were performed at ambient 

temperature (25 ± 1 °C) under galvanostatic 

conditions. 

A 0.025 mol/l sodium sulfate (𝑁𝑎₂𝑆𝑂₄) 

solution was used as the supporting electrolyte. 

When necessary, the pH of the solution was 

adjusted using dilute hydrochloric acid (HCl) 

or sodium hydroxide (NaOH). In this combined 

system, ozone is introduced into the aqueous 

phase, while hydrogen peroxide (𝐻₂𝑂₂) is 

generated electrochemically at the cathode 

surface through the reduction of dissolved 

oxygen. These two oxidants interact through 

the peroxone reaction, producing highly 

reactive hydroxyl radicals (•OH), which are the 

primary agents responsible for the degradation 

of methyl orange. Additionally, ozone can 

decompose directly in water, especially under 

slightly alkaline conditions, further 

contributing to OH• formation. These radicals 

initiate non-selective oxidation, breaking azo 

bonds and aromatic rings, and leading to the 

mineralization of dye molecules into 𝐶𝑂₂, 

𝐻₂𝑂, and inorganic ions. The overall 

mechanism of radical generation and pollutant 

breakdown is depicted in Figure 1b, which 

illustrates the synergy between ozone delivery 

and electrochemical 𝐻₂𝑂₂ production within 

the reactor. 

To monitor the degradation process, 3 mL 

samples were taken from the reactor at 10-

minute intervals. Each sample was filtered 

through a 0.45 µm membrane filter and 

analyzed using a UV–Vis spectrophotometer 

(Hach DR6000, Germany) at the maximum 

absorbance wavelength of methyl orange 

(464 nm). All experiments were conducted in 

triplicate, and the results are presented as mean 

± standard deviation to ensure data reliability. 

A schematic timeline of the experimental 

procedure is provided in Figure 1c, illustrating 

the sequence of steps from solution preparation 

to ozone generation, EPO setup, time-based 

sampling, and final analysis. This visual guide 

complements the equipment schematic (Figure 

1a–b) and helps clarify the practical flow of the 

experiments. 

 
2.1.3. Research Methods 

According to the preliminary studies, the 

investigated parameters were determined 

according to Table 1(Ghalebizade & Ayati, 

2016; Naseri & Ayati, 2024).  

 
Table 1. The range of tested parameters. 

Parameter Value Unit 

Methyl Orange 

Concentration 
10-50-100 ppm 

pH 3-5-7-8-9 - 

O3 Rate 
0.26 – 0.36 – 

0.42 
gr/h 

𝑁𝑎2𝑆𝑜4 

Concentration 

0.025-0.05-

0.075-0.1 
Molar 

Intensity 
250-500-

1000 
mA 

 

To determine various concentrations of 

methyl orange, its UV–Vis absorption 

spectrum was used. The elimination rate of 

the methyl orange contaminant was 

measured using a spectrophotometer at its 

peak absorption wavelength (464 nm), and 

the efficiency of pollutant removal was 

calculated using Eq. (1). 

 

𝑅𝐸(%) =
𝐶0 − 𝐶

𝐶0

× 100 (1) 

Where C0 and C are the initial and final dye 

concentration (mg/l), respectively. 

 
2.1.4. Energy Consumption Calculation 

To assess the sustainability of the Electro-

Peroxone (EPO) process, the specific energy 

consumption (EC) was calculated under the 

optimal operational conditions. Energy 

consumption reflects the amount of 

electrical energy required to degrade a unit 

mass of the target pollutant and is a key 

indicator of process feasibility, particularly 

for scaling to industrial applications. 

The energy consumption (in Wh/g of dye 

removed) was calculated using equation (2): 

 

𝐸𝐶 =
𝑈 × 𝐼 × 𝑡

𝐶𝑅𝑒𝑚𝑜𝑣𝑒𝑑

 (2) 
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Where: U is the applied voltage (V), I is the 

applied current (A), t is the total reaction 

time (h),  𝐶𝑅𝑒𝑚𝑜𝑣𝑒𝑑 is the mass of dye 

removed (g), which was calculated from the 

initial dye concentration, solution volume, 

and removal efficiency. 

 

2.2. Machine Learning Prediction  
2.2.1. Dataset  

The dataset used for machine learning model 

development was generated from a 

comprehensive set of 205 batch experiments 

performed under diverse operating 

conditions. Each experiment was designed 

by varying key process parameters—

including initial pH, current intensity, ozone 

flow rate, electrolyte concentration, and 

initial dye concentration—to evaluate their 

influence on the degradation efficiency of 

methyl orange. The output variable for each 

data point was the removal efficiency (%), 

determined via UV–Vis spectrophotometry 

at 464 nm. 

The range and levels of the experimental 

variables are detailed in Table 1. This dataset 

captures complex, nonlinear interactions 

between process parameters, providing a 

robust basis for machine learning model 

development. 

Prior to modeling, the dataset was randomly 

shuffled and split into 80:20 train/test, with 

164 data points for training and 41 for 

testing. All input features were normalized 

using Min-Max scaling to ensure they were 

comparable on a numerical scale. 

Additionally, five-fold cross-validation was 

employed on the training set during 

hyperparameter tuning to improve model 

generalization and reduce the risk of 

overfitting. 

Data preprocessing, model development, 

and performance evaluation were performed 

using Python 3.11 and the scikit-learn 

(v1.4.2) library, along with NumPy and 

pandas for numerical and data handling 

tasks. 

This structured dataset served as the 

foundation for training and evaluating 

Support Vector Regression (SVR) and 

Random Forest Regression (RFR) models to 

predict methyl orange removal efficiency 

with high accuracy and reliability. 

Figure 2 presents a flowchart of the full 

machine learning prediction pipeline. 
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    (a) 

 

        (b)

 

 
Figure 1. (a) Overall system layout: (1) oxygen capsule, (2) ozone generator, (3) borosilicate glass reactor (100 mL), 

(4) programmable DC power supply, and (5) magnetic stirrer., (b) Internal structure of the reactor, showing the 

graphite cathode and platinum anode (both 3 × 4 cm²), and (c) schematic overview of the experimental procedure 

including solution preparation, EPO setup, sampling, and result analysis. 

 

 
Figure 2. Prediction process in machine learning systems. 

 

(c) 
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2.2.2. Support Vector Regression (SVR) 

The Support Vector Regression (SVR) 

algorithm is a method grounded in Support 

Vector Machine (SVM) theory and is 

commonly used for modeling complex, non-

linear relationships in regression problems. 

The main idea behind SVR is to construct an 

optimal hyperplane within the feature space 

that keeps prediction errors within a certain 

acceptable range, known as epsilon. 

Unlike traditional regression approaches that 

focus on minimizing absolute or squared 

errors, SVR seeks a function that stays 

within this defined tolerance zone—without 

overreacting to data points outside it. During 

the learning process, SVR first maps the 

input data into a higher-dimensional space to 

better capture non-linear patterns. This is 

typically done using kernel functions such as 

linear, polynomial, or Gaussian (RBF) 

kernels. 

Once transformed, the model creates two 

boundary hyperplanes designed to contain 

most of the data points. Any point outside 

this zone is treated as a support vector, which 

influences the final structure of the 

regression function. The optimization 

process in SVR minimizes a cost function 

that penalizes data points that fall outside the 

epsilon margin. 

Key parameters in this model include C, 

which controls the penalty for errors outside 

the margin, and ε (epsilon), which sets the 

allowable range for prediction deviation. 

Finding the right balance between these 

parameters is essential to manage model 

complexity and to prevent both overfitting 

and underfitting 

 
2.2.3. Random Forest (RF) 

Random Forest is an ensemble-based 

machine learning algorithm that uses a 

collection of decision trees to make 

predictions. As shown in Fig. 3, each tree is 

built independently, and the final prediction 

is obtained by either voting (for 

classification tasks) or averaging the outputs 

(for regression tasks) across all trees. This 

approach is especially effective in reducing 

overfitting and improving model accuracy 

when dealing with complex datasets. 

A key feature of Random Forest is its use of 

randomness—both in selecting subsets of 

data and features for each tree—and its 

ability to estimate feature importance using 

advanced techniques. The model’s main 

parameters include n_estimators (the 

number of trees in the forest) and max_depth 

(the maximum depth of each tree), both of 

which significantly influence the model’s 

accuracy and complexity. 

Random Forests are widely applied to both 

regression and classification problems, 

particularly when handling noisy or highly 

complex data.

 

 
Figure 3. A schematic depiction of a Random Forest netwo
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2.2.4. Evaluation Metrics 

To assess the predictive performance of the 

developed machine learning models, 

including Support Vector Regression (SVR) 

and Random Forest Regression (RFR), two 

widely used statistical metrics were 

employed: Mean Absolute Error (MAE) and 

the coefficient of determination (R²). These 

metrics provide complementary insights into 

model accuracy and generalization ability. 

The MAE measures the average magnitude 

of the prediction errors, providing a direct 

measure of the model's deviation from the 

actual values, independent of their direction. 

It is defined in equation (3): 

 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦𝑖̂|

𝑛

𝑖=1

 (3) 

 

Where 𝑦𝑖  and  𝑦𝑖 enote the actual and 

predicted values, respectively, and n is the 

number of observations. 

The R² score, also known as the coefficient of 

determination, indicates the proportion of the 

variance in the dependent variable that is 

predictable from the independent variables. It 

is given by equation (4): 

 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦𝑖̅)
2𝑛

𝑖=1

 (4) 

 

Where 𝑦𝑖 ̅ is the mean of the actual values. An 

𝑅2 value closer to 1 signifies better model 

performance, while values near or below zero 

indicate poor predictive capability. 

All models were trained and validated using 

the same dataset split to ensure a fair 

comparison. Hyperparameters for both SVR 

and RFR models were optimized using grid 

search with k-fold cross-validation (k = 5), 

ensuring robustness and reducing the risk of 

overfitting. Model evaluation was performed 

on the holdout (test) dataset, which was not 

exposed during training. 

 

3. Results and Discussions 

3.1. Effect of Current Intensity 
The effect of applied current on process 

performance is illustrated in Fig. 4. As 

shown, increasing the applied current from 

250 mA to 500 mA significantly enhances the 

dye removal efficiency, from approximately 

68% to 94% after 20 minutes of reaction 

time. This enhancement is attributed to the 

higher production of hydrogen peroxide at 

the cathode surface with increasing current 

intensity, which leads to a greater generation 

of hydroxyl radicals with powerful oxidizing 

agents responsible for pollutant 

degradation(Ghalebizade & Ayati, 2016; 

Ghasemi et al., 2020).. 

A further increase in current intensity to 1000 

mA results in a slight improvement in dye 

removal, reaching around 97%. However, the 

enhancement beyond 500 mA is marginal, 

and the efficiency appears to plateau. This 

indicates that the production of hydroxyl 

radicals may have reached a saturation point 

due to limited ozone solubility in the aqueous 

medium, thereby preventing additional 

radical formation despite the higher current 

input. Moreover, the excess hydrogen 

peroxide generated at elevated current levels 

could act as a scavenger for hydroxyl 

radicals, reducing their availability through 

parasitic side reactions. Another possible 

explanation for the decreased efficiency at 

1000 mA is the decomposition or reduction 

of hydrogen peroxide at the cathode surface 

due to the increased applied potential. 

h may favor undesired reactions over oxygen 

evolution(Khataee et al., 2011; Naseri & 

Ayati, 2024). 

Interestingly, at 250 mA, the dye removal 

efficiency reaches nearly 99% within 20 

minutes and remains stable throughout the 

reaction. This suggests that lower current 

intensity not only achieves high removal 

efficiency but also maintains it consistently, 

likely with lower energy consumption. Thus, 

it can be concluded that 250 mA represents 

the optimal current intensity in this system, 

offering both high efficiency and better 

energy economy. 
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Figure 4. Effect of Current Intensity on dye removal 

efficiency (Experimental conditions: Initial dye 

concentration = 50 ppm, Electrolyte concentration = 

0.025 M, Ozone flow rate = 0.2 gr/h, pH = 6.4). 

 

3.2. Effect of Electrolyte Concentration 

and Ozone Flow  

Electrolyte concentration plays a pivotal role 

in modulating electrochemical oxidation 

efficiency, primarily by influencing ionic 

conductivity, interfacial charge-transfer 

kinetics, and reactive species formation. 

Sodium sulfate (𝑁𝑎₂𝑆𝑂₄), a widely used inert 

electrolyte in electrochemical advanced 

oxidation processes (EAOPs), was selected 

to evaluate the role of supporting electrolyte 

concentration in the degradation of methyl 

orange. 

Experiments were conducted using four 

𝑁𝑎₂𝑆𝑂₄ concentrations (0.025, 0.05, and 0.1 

M), and their effects on dye removal 

efficiency were assessed over 60 minutes 

(Fig. 5). As observed, increasing electrolyte 

concentration from 0.025 M to 0.1 M 

generally enhanced the degradation rate, with 

initial removal efficiency at 20 minutes rising 

from ~78% to ~93%. This enhancement is 

attributed to a reduction in ohmic resistance, 

which facilitates electron transfer and 

promotes in situ generation of 𝐻₂𝑂₂ via the 

two-electron reduction of oxygen at the 

cathode(Naseri & Ayati, 2024). 

However, a more complex interplay emerges 

at higher electrolyte concentrations. While 

0.1 M demonstrated superior early-stage 

performance, it plateaued at ~96% removal 

by 60 minutes, slightly lower than the 98% 

and 97% achieved at 0.05 respectively. This 

non-linear trend may be attributed to side 

reactions and radical scavenging phenomena. 

At elevated sulfate concentrations, excessive 

𝑆𝑂₄²⁻ can competitively react with hydroxyl 

radicals (•OH), forming sulfate radicals 

(𝑆𝑂₄ • ⁻). 

While 𝑆𝑂₄ • ⁻ is a potent oxidant (𝐸⁰ ≈
 2.6 𝑉), its selectivity and reaction kinetics 

differ significantly from those of (•OH), 

possibly leading to less effective dye 

mineralization or recombination losses. 

Furthermore, an overabundance of ionic 

species can suppress mass transport near the 

electrode interface or shift equilibrium 

reactions unfavorably. 

Fig. 6 presents the effect of the injected ozone 

flow rate on the efficiency of the electro-

peroxone process for various ozone flow 

rates including 0.26 gr/h, 0.36 gr/h, and 0.42 

gr/h. Increasing the injected ozone flow is 

associated with improved pollutant removal 

efficiency. So that, by increasing the ozone 

flow from 0.26 g/h to 0.42 g/h, the dye 

removal efficiency improves from 

approximately 82% to 92% after 30 minutes. 

Increasing the injected ozone flow leads to an 

increased reaction of hydrogen peroxide and 

ozone and eventually the production of more 

hydroxyl radicals, which improves the dye 

removal efficiency(Wu et al., 2017). 

Increasing the amount of injected ozone 

enhances the transfer of ozone from the gas 

phase to the solution phase. Therefore, the 

reactions of ozone with hydrogen peroxide 

and the reduction of ozone at the cathode 

surface are improved. Based on the results 

presented in Fig. 6, increasing the injected 

ozone flow rate from 0.26 g/h to 0.42 g/h 

consistently enhanced the dye removal 

efficiency throughout the experiment. 
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Figure 5. Effect of electrolyte concentration on dye 

removal efficiency (Initial dye concentration = 50 

ppm, Ozone flow rate = 0.2 gr/h, Intensity = 1000 mA, 

pH =6.4). 

 
Figure 6. Effect of ozone flow rate on dye removal 

efficiency (Experimental conditions: Initial dye 

concentration = 50 ppm, Electrolyte concentration = 

0.025 M, Intensity = 1000 ma, pH =6.4). 

 

3.3. Effect of Initial pH  

The effect of initial pH (3, 5, 7, 8, and 9) on 

the dye removal efficiency was studied under 

the optimum conditions obtained from 

previous experiments, as shown in Fig. 7. 

Primary pH values were adjusted but not 

controlled during the reaction. 

The results presented in Fig. 6 indicate that 

the initial pH has a noticeable impact on the 

dye removal efficiency. The dye removal 

efficiency at the endpoint of the experiment 

at pH 3, 5, 7, 8, and 9 was approximately 

98.8%, 97.9%, 93.6%, 88.2%, and 79.8%, 

respectively. 

The electro-peroxone process in this study 

demonstrated higher dye removal efficiency 

under acidic conditions, consistent with the 

observed results. While ozonation is 

sometimes reported to perform better in 

alkaline pH due to the formation of reactive 

radicals like hydroxyl radicals (•OH) from 

ozone and hydroxide ions, the actual 

efficiency can vary depending on the system. 

In acidic conditions, ozone remains more 

stable and reacts directly with the dye 

molecules, thereby enhancing degradation. 

Additionally, the presence of hydrogen 

peroxide at lower pH may promote radical 

formation without significant scavenging 

effects, resulting in improved dye removal 

efficiency at acidic pH levels(Ghasemi et al., 

2020). 

Another possible mechanism for hydroxyl 

radical production involves a reaction 

involving the basic form of hydrogen 

peroxide. Based on this reaction, the 

conjugate acid of hydrogen peroxide can 

react with ozone to produce hydroxyl 

radicals, which degrade contaminants. 

The high efficiency of the electro-peroxone 

process observed in our experiments at an 

acidic pH (pH 3) might be related to a better 

performance of the electrode material in 

generating hydrogen peroxide under these 

conditions. The results show that the electro-

peroxone process exhibits relatively high 

efficiency across the tested pH range (3-9), 

although the dominant treatment mechanism 

might vary at different pH values. Other 

researchers acknowledge this complexity due 

to pH changes(Bakheet et al., 2013; Khataee 

et al., 2011). The overall results suggest that 

the electro-peroxone process provides 

acceptable performance across a wide pH 

range. Given the high efficiency observed 

across different pH values in our study, using 

the natural pH of the dye solution may be 

optimal to minimize costs and issues 

associated with initial pH adjustment. 
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Figure 7. Effect of pH on dye removal efficiency 

(Initial dye concentration = 50 ppm, Ozone flow rate 

= 0.2 gr/h, Intensity = 1000 mA, Electrolyte 

concentration = 0.025 M). 

 

 

3.4.  Effect of Initial Dye Concentration  

The effect of changes in the initial dye 

concentration on electro-peroxone efficiency 

is shown in Fig. 8. This figure illustrates the 

dye removal efficiency over time for three 

different initial dye concentrations: 10 ppm, 

50 ppm, and 100 ppm. 

The results in Fig. 6 indicate that the initial 

dye concentration has a noticeable impact on 

the reaction time required to achieve 

significant removal. As the initial dye 

concentration increases from 10 ppm to 50 

ppm, then to 100 ppm, the time needed to 

achieve a high percentage of dye removal 

generally increases. 

Specifically, at the lowest concentration of 10 

ppm, a high removal efficiency (around 90%) 

is achieved relatively quickly, within 

approximately 25 minutes. When the initial 

concentration is increased to 50 ppm, a 

similar high removal efficiency (around 

98%) is achieved, but it takes longer —

approximately 40 minutes. The highest initial 

concentration tested, 100 ppm, shows a 

slightly slower initial removal rate than 50 

ppm, but it reaches a high removal efficiency 

(around 98%) after approximately 50 

minutes. 

In electrochemical processes, increasing the 

concentration of contaminants can reduce 

removal efficiency or extend reaction time 

because the amount of oxidizing agents 

produced may remain relatively constant. In 

our experiments, a high dye removal 

efficiency is achieved across all tested initial 

concentrations. Still, the time required to 

reach that efficiency is clearly influenced by 

the initial dye load. 

Considering these results, a lower initial 

pollutant concentration appears to lead to 

faster removal kinetics in our electro-

peroxone system. However, it's also essential 

to consider energy consumption per unit of 

removed dye, as discussed in the referenced 

text, to determine the most economically 

viable operating conditions for different 

initial concentrations. The trade-off between 

reaction time and energy efficiency often 

necessitates finding an optimal initial dye 

concentration for a given system. 

 
Figure 8. Effect of initial concentration on dye 

removal efficiency (pH = 6.4, Ozone flow rate = 0.2 

gr/h, Intensity = 1000 mA, Electrolyte concentration = 

0.025 M). 

 

3.5. Energy Consumption Analysis 

Under optimal operating conditions (30 V, 

250 mA, 60 min), the system achieved 99% 

removal of 50 ppm MO from 75 mL solution. 

The total energy used was 7.5 Wh, 

corresponding to approximately 2,019.6 Wh 

per gram of dye removed. While this value 

may appear high due to the small reaction 

volume, it reflects the power intensity typical 

of lab-scale setups and can be optimized in 

scaled-up systems. 
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3.5 Predictive Modeling of Methyl Orange 

(MO) Removal Efficiency: Performance 

Assessment of SVR and Random Forest 

To develop reliable predictive models for the 

electroperoxone-based removal of methyl 

orange (MO), two supervised machine 

learning algorithms—Support Vector 

Regression (SVR) and Random Forest 

(RF)—were investigated. Their performance 

was quantitatively compared using two key 

statistical metrics: the coefficient of 

determination (R²) and the mean absolute 

error (MAE), as summarized in Table 2. 

 
3.5.1 Performance and Limitations of the SVR 

Model 

The SVR model was implemented with a 

radial basis function (RBF) kernel, and the 

hyperparameters were optimized via a 

systematic grid search. The optimal setting 

(C = 46.0, ε = 0.01) yielded an R² of 0.672 

and a MAE of 8.49. These results indicate 

moderate accuracy in predicting MO removal 

efficiency. Although SVR captured general 

patterns in the dataset, its predictive variance 

increased notably at extreme values and 

under complex nonlinear interactions, 

suggesting limited generalization capability. 

As shown in Figure 9, the SVR predictions 

deviated substantially from the identity line, 

especially for observations near the 

operational boundaries. This discrepancy 

may stem from the model’s sensitivity to 

outliers and its inability to fully 

accommodate the multivariate, nonlinear 

behavior inherent in electrochemical 

degradation processes. 

 
3.5.2 Predictive Superiority of the Random 

Forest Model 

In contrast, the Random Forest model 

demonstrated significantly better 

performance, achieving an R² of 0.823 and a 

lower MAE of 6.38 with only 6 decision trees 

(n_estimators = 6) and a fixed random state 

of 49. RF's ensemble learning structure, 

which aggregates outputs from multiple 

decorrelated decision trees, enables the 

model to robustly learn from complex, noisy, 

and nonlinear data without extensive tuning. 

As illustrated in Figure 9, the RF model 

produced predictions that aligned more 

closely with the experimental data, showing 

minimal dispersion and improved 

consistency across the range of values. Figure 

10 further supports this observation, showing 

that RF effectively tracked temporal or 

sample-based variations, minimizing both 

over- and under-estimations. 

The superior performance of RF is attributed 

to its: 

• Tolerance to overfitting via bootstrap 

aggregation, 

• Capability to model higher-order 

interactions without requiring explicit 

functional forms, 

• Reduced sensitivity to data 

distribution assumptions. 

 
3.5.3 Model Comparison and Implications for 

Process Optimization 
The comparative results (Table 2) highlight 

that RF outperformed SVR across all 

evaluation criteria. The R² value improved by 

approximately 24%, while the MAE 

decreased by nearly 25%. This substantial 

performance gain underscores RF’s superior 

capacity to capture the inherent complexities 

of the electrochemical treatment system. 

From an applied perspective, the Random 

Forest model holds greater promise for 

practical deployment in real-time 

environmental monitoring and process 

control applications. Its high accuracy, 

stability, and interpretability make it an 

excellent candidate for supporting decision-

making frameworks in advanced oxidation 

processes (AOPs), particularly under 

dynamic and nonlinear operating conditions. 
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Table 2. Comparative performance of SVR and 

Random Forest models in predicting methyl orange 

removal efficiency 

Model 
Optimized 

Hyperparameters 
R² MAE 

SVR 
C = 46.0, Epsilon = 

0.01 
0.672 8.49 

Random 

Forest 

n_estimators = 6, 

random_state = 49 
0.823 6.38 

 

 
Figure 9. Comparison of predicted versus actual MO 

removal efficiency using SVR and Random Forest 

models. 

 
Figure 10. Trend analysis of actual versus predicted 

MO removal efficiencies across test samples.  

 

4. Results and Discussion 

4.1. Sustainability and Environmental 

Safety 

In terms of sustainability and environmental 

safety, the post-treatment solution was 

neutralized and filtered, and excess ozone 

was quenched using KI solution. While the 

supporting electrolyte (sodium sulfate) is 

inert, further work is needed to evaluate 

potential trace by-products and to explore 

safe reuse or disposal of treated effluents in 

real applications. 

 
4.2. Study Limitations 

It is also essential to acknowledge some 

practical limitations. This study used 

synthetic dye solutions, which enabled 

precise control of variables and 

reproducibility. However, real wastewater 

contains a broader and more complex matrix 

that may affect performance. Moreover, 

although the experiments lasted only 60 

minutes, the stable removal efficiency 

observed suggests good short-term 

reliability. Future investigations are 

recommended to explore longer operation 

times (e.g., 120–180 minutes), evaluate 

electrode longevity, assess fouling behavior, 

and confirm the system’s robustness in 

repeated or continuous operation. 

 

5. Conclusions 

This study demonstrated the effective 

degradation of methyl orange (MO) using the 

electroperoxone (EPO) process, a hybrid 

advanced oxidation technology combining 

electrochemical oxidation and ozonation. 

The results revealed that operational 

parameters, including current intensity, 

electrolyte concentration, ozone dosage, pH, 

and initial pollutant load, significantly 

influence degradation efficiency. Optimal 

removal performance was achieved at lower 

current intensities (250 mA) and mildly 

acidic pH (3–5), highlighting the importance 

of optimizing process conditions to balance 

efficiency and energy consumption. 

Furthermore, machine learning algorithms 

were employed to model and predict the MO 

removal efficiency. Among the tested 

models, Random Forest outperformed 

Support Vector Regression, achieving a 

higher coefficient of determination (R² = 

0.823) and a lower mean absolute error 

(MAE = 6.38), indicating superior predictive 

accuracy and robustness in capturing 
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nonlinear relationships among process 

variables. 

The integration of experimental optimization 

and machine learning modeling offers a 

robust framework for advancing data-driven 

decision-making in water treatment 

technologies. Future work may focus on 

expanding the dataset, incorporating real 

wastewater matrices, and exploring hybrid 

ML models to further improve predictive 

performance and practical applicability. 

Future research may focus on applying the 

EPO process to real wastewater samples, 

evaluating the formation of toxic by-products 

via LC-MS analysis, and scaling the process 

for semi-industrial or continuous-flow 

applications. The integration of real-time 

ML-based control strategies could further 

enhance system adaptability and 

performance. 
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