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The electroperoxone (EPO) process, which integrates ozonation and
electrochemical hydrogen peroxide generation, has attracted attention as an
efficient advanced oxidation technology for treating recalcitrant pollutants. This
study investigates the application of EPO for the removal of organic dye from
synthetic wastewater using a two-stage analytical framework. In the first stage, a
series of systematic batch experiments were conducted to investigate the effects
of key operational parameters initial pH, applied current, ozone dosage, and
reaction time on decolorization efficiency. In the second stage, predictive models
were developed using machine learning algorithms Support Vector Regression
(SVR) and Random Forest (RF) to capture the process's complex, nonlinear
behavior. The Random Forest model outperformed others, achieving an R2 value
above 0.823 and demonstrating superior accuracy in predicting removal
efficiency. Sensitivity analysis revealed ozone dosage and applied current as the
most influential factors. These results highlight the potential of combining
experimental optimization with robust data-driven modeling to enhance the design
and scalability of advanced oxidation processes in wastewater treatment.

1. Introduction

In recent decades, the escalating contamination

significant environmental and health concerns
due to their stability and resistance to

of water resources by a myriad of industrial
chemicals and toxic substances has emerged as
a paramount global challenge. (Deogaonkar-
Baride et al., 2025; Firozjaee et al., 2020). The
discharge of inadequately treated effluents
from various sectors, particularly the textile
industry, introduces a complex mixture of
hazardous compounds into aquatic ecosystems,
jeopardizing both environmental integrity and
public health (Bopape et al., 2024).

Azo dyes are among the most persistent organic
pollutants in aquatic environments, posing

conventional degradation processes (Srivatsav,
Devi et al.). Methyl orange (MO), a widely
used azo dye, is particularly recalcitrant under
natural conditions, leading to long-term
accumulation in water bodies and potential
toxic effects on aquatic ecosystems. The
presence of such pollutants highlights the need
for efficient and sustainable removal
technologies that can effectively degrade these
contaminants into less harmful
byproducts(Tamer et al., 2024; Tingting et al.,
2015).
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Advanced oxidation processes (AOPs) have
been extensively investigated for the
degradation of recalcitrant organic pollutants
due to their ability to generate highly reactive
species that facilitate the breakdown of
complex molecular structures(Abdi et al.,
2025; Chaturvedi et al., 2022; Shahamat et al.,
2022). Among these, the electroperoxone
(EPO) process, which integrates
electrochemical oxidation with ozonation, has
emerged as a promising technique for removing
azo dyes from wastewater(Chen et al., 2023).
The effectiveness of this process is influenced
by several operational parameters, including
electrolyte concentration, pH, ozone dosage,
and initial pollutant concentration, which
collectively determine its overall
performance(Chen et al.,, 2023; Shokri &
Sanavi Fard, 2022).

Despite the demonstrated efficiency of AOPs,
optimizing their operational conditions remains
challenging due to complex interactions among
process variables. Traditional experimental
approaches for process optimization are often
time-intensive  and  resource-demanding,
limiting their practical applicability in large-
scale treatment systems(Liu et al., 2024). In
recent years, machine learning (ML)
techniques have been increasingly applied to
environmental modeling, offering a data-driven
approach to process optimization and
predictive analysis. Various ML algorithms,
including support vector regression (SVR) and
random forest (RF) have been employed to
enhance the accuracy of pollutant degradation
predictions and provide valuable insights into
process dynamics(Fahimi Bandpey et al., 2024;
Lateef et al., 2022; Moosavi et al., 2021;
Saghafi et al., 2024).

In this study, we investigate the removal of MO
using the EPO process and employ ML models
to predict and optimize its degradation
efficiency. The predictive performance of
different ML algorithms is evaluated based on
standard statistical metrics, including mean
absolute error (MAE) and the coefficient of
determination (R?). By integrating
experimental  findings with  data-driven
modeling, this study aims to provide a robust

framework for improving AOPs and advancing
sustainable water treatment technologies.

2. Materials and Methods

2.1. Experimental

2.1.1. Materials

Methyl orange (MO, C14H14N3Na0O5S), used
as the model organic contaminant in this study,
was obtained from Merck Co. (Germany) with
a purity greater than 99%. Sodium sulfate
(Na,S0,, Merck) was used as the supporting
electrolyte to provide ionic conductivity during
electrochemical treatment. pH adjustments
were performed using 37% hydrochloric acid
(HCI) and sodium hydroxide (NaOH), both
purchased from Merck. All solutions were
prepared using deionized water to eliminate the
influence of background ions. Graphite plates
(99.9% purity) were used as the cathodic
electrode material due to their high electrical
conductivity, chemical stability, and cost-
effectiveness.

2.1.2. Experimental Set-up

A schematic of the experimental setup is
presented in Fig. 1a. The system consists of an
oxygen capsule (1), an ozone generator (2), a
programmable DC power supply (3), a
magnetic stirrer (4), and a borosilicate glass
reactor (5) with an effective working volume of
75 mL. Oxygen gas was passed through the
ozone generator, where it was partially
converted to ozone. The resulting ozone-
oxygen mixture was then introduced directly
into the reactor to enhance the oxidative
degradation of the target pollutant.

The internal structure of the reactor is shown in
Fig. 1b. Two flat electrodes were positioned
vertically and 1 cm apart inside the reactor: a
graphite plate (3 < 4 cm?) served as the cathode,
and a steel sheet of the same size functioned as
the anode. Before each experiment, the
electrodes were polished with fine sandpaper,
immersed in 10% nitric acid for chemical
cleaning, rinsed with deionized water, and
dried at room temperature to ensure consistent
surface conditions.

The reactor was placed on a magnetic stirrer
operating at 500 rpm to ensure continuous
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mixing of the electrolyte and uniform
distribution of oxidants. A constant electric
current was applied via the DC power supply.
All experiments were performed at ambient
temperature (25+1°C) under galvanostatic
conditions.

A 0.025 mol/l sodium sulfate (Na,S0,)
solution was used as the supporting electrolyte.
When necessary, the pH of the solution was
adjusted using dilute hydrochloric acid (HCI)
or sodium hydroxide (NaOH). In this combined
system, ozone is introduced into the aqueous
phase, while hydrogen peroxide (H,0;) is
generated electrochemically at the cathode
surface through the reduction of dissolved
oxygen. These two oxidants interact through
the peroxone reaction, producing highly
reactive hydroxyl radicals (+OH), which are the
primary agents responsible for the degradation
of methyl orange. Additionally, ozone can
decompose directly in water, especially under
slightly  alkaline conditions, further
contributing to OHe formation. These radicals
initiate non-selective oxidation, breaking azo
bonds and aromatic rings, and leading to the

2.1.3. Research Methods

According to the preliminary studies, the
investigated parameters were determined
according to Table 1(Ghalebizade & Avyati,
2016; Naseri & Ayati, 2024).

Table 1. The range of tested parameters.

Parameter Value Unit
Methyl Orange
Concentration 10-50-100 ppm
pH 3-5-7-8-9
0.26 — 0.36 —

O3 Rate 0.42 gr/h
Na2So4 0.025-0.05- Molar
Concentration 0.075-0.1

. 250-500-
Intensity 1000 mA

To determine various concentrations of
methyl orange, its UV-Vis absorption
spectrum was used. The elimination rate of
the methyl orange contaminant was
measured using a spectrophotometer at its
peak absorption wavelength (464 nm), and

mineralization of dye molecules into CO,,
H,0, and inorganic ions. The overall
mechanism of radical generation and pollutant
breakdown is depicted in Figure 1b, which
illustrates the synergy between ozone delivery
and electrochemical H,0, production within
the reactor.

To monitor the degradation process, 3 mL
samples were taken from the reactor at 10-
minute intervals. Each sample was filtered
through a 0.45um membrane filter and
analyzed using a UV-Vis spectrophotometer
(Hach DR6000, Germany) at the maximum
absorbance wavelength of methyl orange
(464 nm). All experiments were conducted in
triplicate, and the results are presented as mean
+ standard deviation to ensure data reliability.
A schematic timeline of the experimental
procedure is provided in Figure 1c, illustrating
the sequence of steps from solution preparation
to ozone generation, EPO setup, time-based
sampling, and final analysis. This visual guide
complements the equipment schematic (Figure
la-b) and helps clarify the practical flow of the
experiments.

the efficiency of pollutant removal was
calculated using Eq. (1).

CO_

C
RE(%) = X 100 1)

0
Where Co and C are the initial and final dye
concentration (mg/l), respectively.

2.1.4. Energy Consumption Calculation

To assess the sustainability of the Electro-
Peroxone (EPO) process, the specific energy
consumption (EC) was calculated under the
optimal operational conditions. Energy
consumption reflects the amount of
electrical energy required to degrade a unit
mass of the target pollutant and is a key
indicator of process feasibility, particularly
for scaling to industrial applications.

The energy consumption (in Wh/g of dye
removed) was calculated using equation (2):

UxIxt
EC =

()

CRemoved
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Where: U is the applied voltage (V), I is the
applied current (A), t is the total reaction
time (h), Cgremovea 1S the mass of dye
removed (g), which was calculated from the
initial dye concentration, solution volume,
and removal efficiency.

2.2. Machine Learning Prediction

2.2.1. Dataset

The dataset used for machine learning model
development was generated from a
comprehensive set of 205 batch experiments
performed  under diverse  operating
conditions. Each experiment was designed
by varying key process parameters—
including initial pH, current intensity, ozone
flow rate, electrolyte concentration, and
initial dye concentration—to evaluate their
influence on the degradation efficiency of
methyl orange. The output variable for each
data point was the removal efficiency (%),
determined via UV-Vis spectrophotometry
at 464 nm.

The range and levels of the experimental
variables are detailed in Table 1. This dataset
captures complex, nonlinear interactions
between process parameters, providing a
robust basis for machine learning model
development.

Prior to modeling, the dataset was randomly
shuffled and split into 80:20 train/test, with
164 data points for training and 41 for
testing. All input features were normalized
using Min-Max scaling to ensure they were
comparable on a numerical scale.
Additionally, five-fold cross-validation was
employed on the training set during
hyperparameter tuning to improve model
generalization and reduce the risk of
overfitting.

Data preprocessing, model development,
and performance evaluation were performed
using Python 3.11 and the scikit-learn

(v1.4.2) library, along with NumPy and
pandas for numerical and data handling
tasks.

This structured dataset served as the
foundation for training and evaluating
Support Vector Regression (SVR) and
Random Forest Regression (RFR) models to
predict methyl orange removal efficiency
with high accuracy and reliability.

Figure 2 presents a flowchart of the full
machine learning prediction pipeline.
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Figure 1. (a) Overall system layout: (1) oxygen capsule, (2) ozone generator, (3) borosilicate glass reactor (100 mL),
(4) programmable DC power supply, and (5) magnetic stirrer., (b) Internal structure of the reactor, showing the
graphite cathode and platinum anode (both 3 X 4 cm?), and (c) schematic overview of the experimental procedure
including solution preparation, EPO setup, sampling, and result analysis.
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Figure 2. Prediction process in machine learning systems.
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2.2.2. Support Vector Regression (SVR)

The Support Vector Regression (SVR)
algorithm is a method grounded in Support
Vector Machine (SVM) theory and is
commonly used for modeling complex, non-
linear relationships in regression problems.
The main idea behind SVR is to construct an
optimal hyperplane within the feature space
that keeps prediction errors within a certain
acceptable range, known as epsilon.

Unlike traditional regression approaches that
focus on minimizing absolute or squared
errors, SVR seeks a function that stays
within this defined tolerance zone—without
overreacting to data points outside it. During
the learning process, SVR first maps the
input data into a higher-dimensional space to
better capture non-linear patterns. This is
typically done using kernel functions such as
linear, polynomial, or Gaussian (RBF)
kernels.

Once transformed, the model creates two
boundary hyperplanes designed to contain
most of the data points. Any point outside
this zone is treated as a support vector, which
influences the final structure of the
regression function. The optimization
process in SVR minimizes a cost function
that penalizes data points that fall outside the
epsilon margin.

Key parameters in this model include C,
which controls the penalty for errors outside
the margin, and ¢ (epsilon), which sets the

allowable range for prediction deviation.
Finding the right balance between these
parameters is essential to manage model
complexity and to prevent both overfitting
and underfitting

2.2.3. Random Forest (RF)

Random Forest is an ensemble-based
machine learning algorithm that uses a
collection of decision trees to make
predictions. As shown in Fig. 3, each tree is
built independently, and the final prediction
iS obtained by either wvoting (for
classification tasks) or averaging the outputs
(for regression tasks) across all trees. This
approach is especially effective in reducing
overfitting and improving model accuracy
when dealing with complex datasets.

A key feature of Random Forest is its use of
randomness—both in selecting subsets of
data and features for each tree—and its
ability to estimate feature importance using
advanced techniques. The model’s main
parameters include n_estimators (the
number of trees in the forest) and max_depth
(the maximum depth of each tree), both of
which significantly influence the model’s
accuracy and complexity.

Random Forests are widely applied to both
regression and classification problems,
particularly when handling noisy or highly
complex data.

Average all predictions

Random Forest
prediction

Figure 3. A schematic depiction of a Random Forest netwo
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2.2.4. Evaluation Metrics

To assess the predictive performance of the
developed machine learning models,
including Support Vector Regression (SVR)
and Random Forest Regression (RFR), two
widely used statistical metrics were
employed: Mean Absolute Error (MAE) and
the coefficient of determination (R2). These
metrics provide complementary insights into
model accuracy and generalization ability.
The MAE measures the average magnitude
of the prediction errors, providing a direct
measure of the model's deviation from the
actual values, independent of their direction.
It is defined in equation (3):

n
1
MAE == |y - 3} ©)
i=1

Where y;and y; enote the actual and
predicted values, respectively, and n is the
number of observations.

The R2 score, also known as the coefficient of
determination, indicates the proportion of the
variance in the dependent variable that is
predictable from the independent variables. It
is given by equation (4):

05

RZ=1-2&128 7
2ie (Vi — ¥)?

(4)

Where y, is the mean of the actual values. An
R? value closer to 1 signifies better model
performance, while values near or below zero
indicate poor predictive capability.

All models were trained and validated using
the same dataset split to ensure a fair
comparison. Hyperparameters for both SVR
and RFR models were optimized using grid
search with k-fold cross-validation (k=15),
h may favor undesired reactions over oxygen
evolution(Khataee et al., 2011; Naseri &
Avyati, 2024).

Interestingly, at 250 mA, the dye removal
efficiency reaches nearly 99% within 20
minutes and remains stable throughout the
reaction. This suggests that lower current
intensity not only achieves high removal

ensuring robustness and reducing the risk of
overfitting. Model evaluation was performed
on the holdout (test) dataset, which was not
exposed during training.

3. Results and Discussions

3.1. Effect of Current Intensity

The effect of applied current on process
performance is illustrated in Fig. 4. As
shown, increasing the applied current from
250 mA to 500 mA significantly enhances the
dye removal efficiency, from approximately
68% to 94% after 20 minutes of reaction
time. This enhancement is attributed to the
higher production of hydrogen peroxide at
the cathode surface with increasing current
intensity, which leads to a greater generation
of hydroxyl radicals with powerful oxidizing
agents responsible for pollutant
degradation(Ghalebizade & Ayati, 2016;
Ghasemi et al., 2020)..

A further increase in current intensity to 1000
mA results in a slight improvement in dye
removal, reaching around 97%. However, the
enhancement beyond 500 mA is marginal,
and the efficiency appears to plateau. This
indicates that the production of hydroxyl
radicals may have reached a saturation point
due to limited ozone solubility in the agqueous
medium, thereby preventing additional
radical formation despite the higher current
input. Moreover, the excess hydrogen
peroxide generated at elevated current levels
could act as a scavenger for hydroxyl
radicals, reducing their availability through
parasitic side reactions. Another possible
explanation for the decreased efficiency at
1000 mA is the decomposition or reduction
of hydrogen peroxide at the cathode surface
due to the increased applied potential.

efficiency but also maintains it consistently,
likely with lower energy consumption. Thus,
it can be concluded that 250 mA represents
the optimal current intensity in this system,
offering both high efficiency and better
energy economy.
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Figure 4. Effect of Current Intensity on dye removal
efficiency (Experimental conditions: Initial dye
concentration = 50 ppm, Electrolyte concentration =
0.025 M, Ozone flow rate = 0.2 gr/h, pH = 6.4).

3.2. Effect of Electrolyte Concentration
and Ozone Flow

Electrolyte concentration plays a pivotal role
in  modulating electrochemical oxidation
efficiency, primarily by influencing ionic
conductivity, interfacial charge-transfer
kinetics, and reactive species formation.
Sodium sulfate (Na,S0,), awidely used inert
electrolyte in electrochemical advanced
oxidation processes (EAOPs), was selected
to evaluate the role of supporting electrolyte
concentration in the degradation of methyl
orange.

Experiments were conducted using four
Na,S0, concentrations (0.025, 0.05, and 0.1
M), and their effects on dye removal
efficiency were assessed over 60 minutes
(Fig. 5). As observed, increasing electrolyte
concentration from 0.025 M to 0.1 M
generally enhanced the degradation rate, with
initial removal efficiency at 20 minutes rising
from ~78% to ~93%. This enhancement is
attributed to a reduction in ohmic resistance,
which facilitates electron transfer and
promotes in situ generation of H,0, via the
two-electron reduction of oxygen at the
cathode(Naseri & Ayati, 2024).

However, a more complex interplay emerges
at higher electrolyte concentrations. While
0.1 M demonstrated superior early-stage
performance, it plateaued at ~96% removal

by 60 minutes, slightly lower than the 98%
and 97% achieved at 0.05 respectively. This
non-linear trend may be attributed to side
reactions and radical scavenging phenomena.
At elevated sulfate concentrations, excessive
$0,*" can competitively react with hydroxyl
radicals (OH), forming sulfate radicals
(S04¢7).

While SO, e+~ is a potent oxidant (E° =~
2.6 V), its selectivity and reaction kinetics
differ significantly from those of (<OH),
possibly leading to less effective dye
mineralization or recombination losses.
Furthermore, an overabundance of ionic
Species can suppress mass transport near the
electrode interface or shift equilibrium
reactions unfavorably.

Fig. 6 presents the effect of the injected ozone
flow rate on the efficiency of the electro-
peroxone process for various ozone flow
rates including 0.26 gr/h, 0.36 gr/h, and 0.42
gr/h. Increasing the injected ozone flow is
associated with improved pollutant removal
efficiency. So that, by increasing the ozone
flow from 0.26 g/h to 0.42 g/h, the dye
removal  efficiency  improves  from
approximately 82% to 92% after 30 minutes.
Increasing the injected ozone flow leads to an
increased reaction of hydrogen peroxide and
ozone and eventually the production of more
hydroxyl radicals, which improves the dye
removal efficiency(Wu et al., 2017).
Increasing the amount of injected ozone
enhances the transfer of ozone from the gas
phase to the solution phase. Therefore, the
reactions of ozone with hydrogen peroxide
and the reduction of ozone at the cathode
surface are improved. Based on the results
presented in Fig. 6, increasing the injected
ozone flow rate from 0.26 g/h to 0.42 g/h
consistently enhanced the dye removal
efficiency throughout the experiment.
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Figure 5. Effect of electrolyte concentration on dye
removal efficiency (Initial dye concentration = 50
ppm, Ozone flow rate = 0.2 gr/h, Intensity = 1000 mA,
pH =6.4).
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Figure 6. Effect of ozone flow rate on dye removal
efficiency (Experimental conditions: Initial dye
concentration = 50 ppm, Electrolyte concentration =
0.025 M, Intensity = 1000 ma, pH =6.4).

3.3. Effect of Initial pH

The effect of initial pH (3, 5, 7, 8, and 9) on
the dye removal efficiency was studied under
the optimum conditions obtained from
previous experiments, as shown in Fig. 7.
Primary pH values were adjusted but not
controlled during the reaction.

The results presented in Fig. 6 indicate that
the initial pH has a noticeable impact on the
dye removal efficiency. The dye removal
efficiency at the endpoint of the experiment
at pH 3, 5, 7, 8, and 9 was approximately
98.8%, 97.9%, 93.6%, 88.2%, and 79.8%,
respectively.

The electro-peroxone process in this study
demonstrated higher dye removal efficiency
under acidic conditions, consistent with the
observed results. While ozonation s
sometimes reported to perform better in
alkaline pH due to the formation of reactive
radicals like hydroxyl radicals (¢OH) from
ozone and hydroxide ions, the actual
efficiency can vary depending on the system.
In acidic conditions, ozone remains more
stable and reacts directly with the dye
molecules, thereby enhancing degradation.
Additionally, the presence of hydrogen
peroxide at lower pH may promote radical
formation without significant scavenging
effects, resulting in improved dye removal
efficiency at acidic pH levels(Ghasemi et al.,
2020).

Another possible mechanism for hydroxyl
radical production involves a reaction
involving the basic form of hydrogen
peroxide. Based on this reaction, the
conjugate acid of hydrogen peroxide can
react with ozone to produce hydroxyl
radicals, which degrade contaminants.

The high efficiency of the electro-peroxone
process observed in our experiments at an
acidic pH (pH 3) might be related to a better
performance of the electrode material in
generating hydrogen peroxide under these
conditions. The results show that the electro-
peroxone process exhibits relatively high
efficiency across the tested pH range (3-9),
although the dominant treatment mechanism
might vary at different pH values. Other
researchers acknowledge this complexity due
to pH changes(Bakheet et al., 2013; Khataee
et al., 2011). The overall results suggest that
the electro-peroxone process provides
acceptable performance across a wide pH
range. Given the high efficiency observed
across different pH values in our study, using
the natural pH of the dye solution may be
optimal to minimize costs and issues
associated with initial pH adjustment.
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Figure 7. Effect of pH on dye removal efficiency
(Initial dye concentration = 50 ppm, Ozone flow rate
= 0.2 gr/h, Intensity = 1000 mA, Electrolyte
concentration = 0.025 M).

3.4. Effect of Initial Dye Concentration
The effect of changes in the initial dye
concentration on electro-peroxone efficiency
is shown in Fig. 8. This figure illustrates the
dye removal efficiency over time for three
different initial dye concentrations: 10 ppm,
50 ppm, and 100 ppm.

The results in Fig. 6 indicate that the initial
dye concentration has a noticeable impact on
the reaction time required to achieve
significant removal. As the initial dye
concentration increases from 10 ppm to 50
ppm, then to 100 ppm, the time needed to
achieve a high percentage of dye removal
generally increases.

Specifically, at the lowest concentration of 10
ppm, a high removal efficiency (around 90%)
is achieved relatively quickly, within
approximately 25 minutes. When the initial
concentration is increased to 50 ppm, a
similar high removal efficiency (around
98%) is achieved, but it takes longer —
approximately 40 minutes. The highest initial
concentration tested, 100 ppm, shows a
slightly slower initial removal rate than 50
ppm, but it reaches a high removal efficiency
(around 98%) after approximately 50
minutes.

In electrochemical processes, increasing the
concentration of contaminants can reduce
removal efficiency or extend reaction time

because the amount of oxidizing agents
produced may remain relatively constant. In
our experiments, a high dye removal
efficiency is achieved across all tested initial
concentrations. Still, the time required to
reach that efficiency is clearly influenced by
the initial dye load.

Considering these results, a lower initial
pollutant concentration appears to lead to
faster removal Kkinetics in our electro-
peroxone system. However, it's also essential
to consider energy consumption per unit of
removed dye, as discussed in the referenced
text, to determine the most economically
viable operating conditions for different
initial concentrations. The trade-off between
reaction time and energy efficiency often
necessitates finding an optimal initial dye
concentration for a given system.

100

®
=1
I

60 o

Removal Efiiciency (%)

MO= 10 ppm
—@— MO= 50 ppm
—@— MO= 100 ppm

T T T T T T T
0 10 20 30 40 50 60

Time (min)
Figure 8. Effect of initial concentration on dye
removal efficiency (pH = 6.4, Ozone flow rate = 0.2
gr/h, Intensity = 1000 mA, Electrolyte concentration =
0.025 M).

3.5. Energy Consumption Analysis

Under optimal operating conditions (30 V,
250 mA, 60 min), the system achieved 99%
removal of 50 ppm MO from 75 mL solution.
The total energy used was 7.5 Wh,
corresponding to approximately 2,019.6 Wh
per gram of dye removed. While this value
may appear high due to the small reaction
volume, it reflects the power intensity typical
of lab-scale setups and can be optimized in
scaled-up systems.
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3.5 Predictive Modeling of Methyl Orange
(MO) Removal Efficiency: Performance
Assessment of SVR and Random Forest
To develop reliable predictive models for the
electroperoxone-based removal of methyl
orange (MO), two supervised machine
learning  algorithms—Support ~ Vector
Regression (SVR) and Random Forest
(RF)—were investigated. Their performance
was quantitatively compared using two key
statistical metrics: the coefficient of
determination (R%) and the mean absolute
error (MAE), as summarized in Table 2,

3.5.1 Performance and Limitations of the SVR
Model

The SVR model was implemented with a
radial basis function (RBF) kernel, and the
hyperparameters were optimized via a
systematic grid search. The optimal setting
(C =46.0, ¢ = 0.01) yielded an R? of 0.672
and a MAE of 8.49. These results indicate
moderate accuracy in predicting MO removal
efficiency. Although SVR captured general
patterns in the dataset, its predictive variance
increased notably at extreme values and
under complex nonlinear interactions,
suggesting limited generalization capability.
As shown in Figure 9, the SVR predictions
deviated substantially from the identity line,
especially for observations near the
operational boundaries. This discrepancy
may stem from the model’s sensitivity to
outliers and its inability to fully
accommodate the multivariate, nonlinear
behavior inherent in electrochemical
degradation processes.

3.5.2 Predictive Superiority of the Random
Forest Model

In contrast, the Random Forest model
demonstrated significantly better
performance, achieving an R2? of 0.823 and a
lower MAE of 6.38 with only 6 decision trees
(n_estimators = 6) and a fixed random state
of 49. RF's ensemble learning structure,
which aggregates outputs from multiple
decorrelated decision trees, enables the

model to robustly learn from complex, noisy,
and nonlinear data without extensive tuning.
As illustrated in Figure 9, the RF model
produced predictions that aligned more
closely with the experimental data, showing
minimal  dispersion  and improved
consistency across the range of values. Figure
10 further supports this observation, showing
that RF effectively tracked temporal or
sample-based variations, minimizing both
over- and under-estimations.

The superior performance of RF is attributed
to its:

e Tolerance to overfitting via bootstrap
aggregation,

e Capability to model higher-order
interactions without requiring explicit
functional forms,

e Reduced sensitivity to data
distribution assumptions.

3.5.3 Model Comparison and Implications for
Process Optimization

The comparative results (Table 2) highlight
that RF outperformed SVR across all
evaluation criteria. The R2 value improved by
approximately 24%, while the MAE
decreased by nearly 25%. This substantial
performance gain underscores RF’s superior
capacity to capture the inherent complexities
of the electrochemical treatment system.
From an applied perspective, the Random
Forest model holds greater promise for
practical deployment in real-time
environmental monitoring and process
control applications. Its high accuracy,
stability, and interpretability make it an
excellent candidate for supporting decision-
making frameworks in advanced oxidation
processes (AOPs), particularly  under
dynamic and nonlinear operating conditions.
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Table 2. Comparative performance of SVR and
Random Forest models in predicting methyl orange
removal efficiency

Optimized

Model R2 MAE
Hyperparameters
C = 46.0, Epsilon =

SVR 001 0.672 8.49

Random  n_estimators = 6,

Forest random_state = 49 0.823 6.38
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Figure 9. Comparison of predicted versus actual MO
removal efficiency using SVR and Random Forest
models.
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Figure 10. Trend analysis of actual versus predicted
MO removal efficiencies across test samples.

4. Results and Discussion

4.1. Sustainability and Environmental
Safety

In terms of sustainability and environmental
safety, the post-treatment solution was
neutralized and filtered, and excess ozone
was quenched using KI solution. While the
supporting electrolyte (sodium sulfate) is

inert, further work is needed to evaluate
potential trace by-products and to explore
safe reuse or disposal of treated effluents in
real applications.

4.2. Study Limitations

It is also essential to acknowledge some
practical limitations. This study used
synthetic dye solutions, which enabled
precise  control of variables and
reproducibility. However, real wastewater
contains a broader and more complex matrix
that may affect performance. Moreover,
although the experiments lasted only 60
minutes, the stable removal efficiency
observed  suggests good  short-term
reliability.  Future investigations are
recommended to explore longer operation
times (e.g., 120-180 minutes), evaluate
electrode longevity, assess fouling behavior,
and confirm the system’s robustness in
repeated or continuous operation.

5. Conclusions

This study demonstrated the effective
degradation of methyl orange (MO) using the
electroperoxone (EPO) process, a hybrid
advanced oxidation technology combining
electrochemical oxidation and ozonation.
The results revealed that operational
parameters, including current intensity,
electrolyte concentration, ozone dosage, pH,
and initial pollutant load, significantly
influence degradation efficiency. Optimal
removal performance was achieved at lower
current intensities (250 mA) and mildly
acidic pH (3-5), highlighting the importance
of optimizing process conditions to balance
efficiency and energy consumption.
Furthermore, machine learning algorithms
were employed to model and predict the MO
removal efficiency. Among the tested
models, Random Forest outperformed
Support Vector Regression, achieving a
higher coefficient of determination (Rz =
0.823) and a lower mean absolute error
(MAE = 6.38), indicating superior predictive
accuracy and robustness in capturing
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nonlinear relationships among process
variables.

The integration of experimental optimization
and machine learning modeling offers a
robust framework for advancing data-driven
decision-making in  water  treatment
technologies. Future work may focus on
expanding the dataset, incorporating real
wastewater matrices, and exploring hybrid
ML models to further improve predictive
performance and practical applicability.
Future research may focus on applying the
EPO process to real wastewater samples,
evaluating the formation of toxic by-products
via LC-MS analysis, and scaling the process
for semi-industrial or continuous-flow
applications. The integration of real-time
ML-based control strategies could further
enhance system adaptability and
performance.
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