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 This study examines river dynamics and flooding in the town of Boma, 

Democratic Republic of Congo, where vulnerability to flooding is 

increased by climate change and anthropogenic pressures. This study 

aims to address gaps in flood-related fatality prediction by developing a 

predictive model incorporating the interaction between the Congo River 

water level and the Kalamu River discharge. The objectives include using 

a generalized linear model (GLM) with a Poisson distribution, combined 

with optimization algorithms such as particle swarm optimization (PSO) 

and genetic algorithms (GA). The methodology relies on the collection 

of historical data on water levels, discharges, rainfall, and fatalities, 

followed by rigorous data analysis using preprocessing and optimization 

techniques. The results show that PSO outperforms GA in terms of 

convergence speed and efficiency, achieving a better fitness value. 

Fitness values reveal an RMSE of 8.37, an MAE of 6.42, and an R² of -

4.04, indicating significant inaccuracies in the forecasts. Simulations 

reveal a direct relationship between water level, discharge, and deaths, 

highlighting the importance of these interactions for risk management. 

These results provide valuable tools for infrastructure planning and 

raising awareness of the impact of floods on vulnerable populations, thus 

contributing to more effective prevention strategies. 
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1. Introduction 

River dynamics and flooding pose a 

growing threat to riverine populations, 

particularly in vulnerable regions (Jian et 

al., 2021), such as Boma, a town located 

along the Congo River in the western part 

of the Democratic Republic of Congo and 

crossed by the Kalamu River. Boma's 

geographical location makes it 

particularly susceptible to flooding, a risk 

exacerbated by climate change and 

anthropogenic pressures on river 

ecosystems. This vulnerability is all the 

more worrying because it is further 

compounded by climate change and 

anthropogenic pressures on river 

ecosystems. Extreme events, such as 

floods, are becoming increasingly 
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frequent, endangering populations living 

in riparian areas. According to the 

technical services of Congolaise des 

Voies Maritimes (CVM) (the Congolese 

Maritime Authority), "If this rate of rising 

waters of the Congo River continues, 

there would be an overflow of the 

Kalamu River and its tributaries beyond 

their banks," recalling the devastating 

events of 2016 that put the town of Boma 

at risk. Indeed, a critical gap persists in 

accurately predicting flood-related deaths, 

particularly in combining hydrological 

data, advanced statistical modeling, and 

optimization techniques (Tien Bui et al., 

2016). Recent scientific literature 

highlights the growing importance of 

predictive modeling in disaster 

management, as demonstrated by the 

study by Qi et al. (2021), which 

highlights the applications of urban flood 

models in mitigation strategies 

(Fernández & Lutz, 2010; Hoang & Liou, 

2024; Jian et al., 2021; Zhao et al., 2019). 

However, many existing models face 

limitations, including their inability to 

fully capture nonlinear interactions 

between key variables such as water level 

and discharge, which compromises the 

reliability of risk assessments. 

To address this imperative, this study 

aims to develop a robust and innovative 

predictive model for flood-related deaths 

in Boma. The originality of this approach 

lies in its ability to explicitly account for 

the complex interaction between the 

Congo River water level and the Kalamu 

River discharge, relying on a combination 

of advanced methods. The research 

objectives are threefold: to statistically 

model the relationship between water 

level, discharge, and flood-related deaths 

using a generalized linear model (GLM) 

with a Poisson distribution, leveraging 

the flexibility and power of this statistical 

approach to capture nonlinear 

relationships; to optimize the GLM 

parameters using a hybrid approach 

combining simplified particle swarm 

optimization (PSO) and genetic 

algorithms (GA), to efficiently explore 

the parameter space and identify optimal 

configurations; and to simulate flood 

scenarios and visualize the predicted 

impact on mortality rates using 3D 

surface plots, to facilitate communication 

of results and support decision-making. 

Previous research, such as Khosravi et al. 

(2019) and Teng et al. (2017), 

demonstrates the importance of 

optimization in flood risk modeling, 

highlighting the effectiveness of 

optimization algorithms in this context 

(Barbulescu, 2025; Chapi et al., 2017; 

Deng et al., 2022; Jahandideh-Tehrani et 

al., 2020; Kalantar et al., 2021; Tien Bui 

et al., 2016; Tuyen et al., 2021; Yu et al., 

2023; Zhen & Bărbulescu, 2025). To 

achieve these ambitious goals, 

comprehensive historical data on Congo 

River water levels (1960-2017), Kalamu 

River discharges, rainfall, evaporation 

(1992-2023), and flood-related deaths 

were collected from reliable sources, such 

as the CVM in Boma, the Boma weather 

station, and local flood documentation. 

These data underwent rigorous 

preprocessing, including scaling of 

water-level and discharge variables, to 

ensure comparability and suitability for 

statistical models. The PSO and GA 

algorithms were carefully implemented 

and calibrated to optimize model 

parameters, minimizing an objective 

function defined as the negative log-

likelihood of the Poisson distribution plus 

an L1 regularization term to avoid 

overfitting and ensure robustness. 

Previous studies, such as Lui et al. (2023), 

Mudashiru et al. (2021), and Fernández 

and Lutz (2010), highlight the importance 

of data preparation and model 

optimization in flood forecasting. 

Finally, the optimized model was used to 

simulate realistic flood scenarios, and the 

predicted mortality rates were visualized 
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using 3D surface plots, enabling intuitive 

interpretation of the results. This 

integrated and rigorous approach will 

improve our understanding of the 

complex flood dynamics and their impact 

on human lives in the Boma region and 

provide valuable tools for risk 

management and decision-making. The 

theoretical framework underlying this 

research draws on several key areas: 

hydrological modeling (Hassan et al., 

2021), statistical regression (Noor et al., 

2022; Rima et al., 2025; Nguyen, 2020), 

and optimization algorithms. 

Hydrological modeling provides a basis 

for understanding the relationships 

among rainfall, river discharge, and water 

levels. Statistical regression, particularly 

GLM with a Poisson distribution, offers a 

powerful tool for modeling count data, 

such as the number of flood-related 

deaths, while accounting for multiple 

predictor variables. Optimization 

algorithms, such as PSO and GA, provide 

efficient methods for finding the best set 

of model parameters to minimize 

prediction errors. Moreover, model 

regularization is crucial for avoiding 

overfitting and ensuring generalization to 

new data. Previous research, such as that 

by Di Baldassarre et al. (2013) and 

Rentschler et al. (2022), highlights the 

importance of these concepts for 

developing effective predictive models. 

 

2. Materials and Methods  

2.1. Presentation of the study 

environment 

The study was conducted in the town of 

Boma and in the Kalamu River catchment, 

as shown in Figures 1 and 2. Before 

flowing into the Congo River near the 

port of Boma, the Kalamu River flows 

through three communes of the town: 

Kabondo, Nzadi, and Kalamu. The 

catchment of the Kalamu River covers an 

area of 68.84 km² with a perimeter of 44.4 

km. 

 

 
Figure 1. Catchment of the Kalamu River at Boma 
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2.2. Data collection 

Crucial data were collected from various 

sources (Table 1). The CVM in Boma 

recorded water levels of the Congo River 

from 1960 to 2017. Monthly precipitation 

and evaporation data were obtained from 

the Boma meteorological station, 

covering the period from 1992 to 2023. 

Historical information on Kalamu River 

flows and the number of deaths in years 

corresponding to floods was provided by 

flood-related documentation in Boma. 

Table 1 illustrates the data for the flood 

study variables. 
 

Table 1. Variables associated with flooding in Boma by year 

Year of floods 

Water level 

of the Congo 

River (m) 

Congo 

River flood 

Discharge of the 

Kalamu River on 

flood day (m3/s) 

Number of 

deaths from 

flooding 

Flood day 

precipitation (mm) 

23/12/1985 2.6 Large 20.53 3 207.9 

12/12/1999 3.39 Large 36.32 0 365.8 

30/12/2000 2.83 Large 25.85 0 260.6 

20/12/2010 2.79 Large 24.97 0 252.1 

12/12/2015 3.31 Large 24.51 4 247.1 

26/12/2016 3.5 Large 47.62 40 458.6 

05/12/2018 3.01 Large 15.53 0 158.1 

26/11/2019 3.24 Large 12.71 2 129.7 

03/11/2021 2.93 Large 23.84 2 240.9 

03/12/2022 2.74 Large 23.76 0 240 

 
 

2.3. Combination of optimization 

algorithms (PSO and GA), statistical 

modeling (Poisson GLM), and 

simulation techniques 

The analysis begins with data preparation. 

Historical data from the Python 

Anaconda software, including year, water 

level, discharge, number of deaths, and 

precipitation, is loaded into a Pandas 

DataFrame. To ensure optimal 

performance of the optimization 

algorithms, a feature scaling step is 

performed on the Water_Level and 

Flow_Rate variables using the 

StandardScaler class from scikit-learn 

(Chapi et al., 2017). This transformation 

prevents variables with a wide range of 

values from exerting disproportionate 

influence on the optimization process. 

The scaling is performed according to the 

following equation: 

𝑋_𝑆𝑐𝑎𝑙𝑒𝑑 = (
𝑋−𝑚𝑒𝑎𝑛(𝑋)

𝑠𝑡𝑑(𝑋)
)                               (1) 

Where X represents the original variable, 

mean (X) is its mean, and std (X) is its 

standard deviation (Deng et al., 2022). 

Next, an interaction term, 

Flow_Water_Interaction, is created by 

multiplying the scaled values of 

Water_Level and Flow_Rate. This new 

variable is intended to capture potential 

nonlinear relationships between water 

level and discharge and their combined 

impact on the number of deaths. The 

calculation of this interaction term is 

defined by: 

 
𝐹𝑙𝑜𝑤𝑊𝑎𝑡𝑒𝑟𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛

= 

𝑆𝑐𝑎𝑙𝑒𝑑_𝑊𝑎𝑡𝑒𝑟_𝐿𝑒𝑣𝑒𝑙 × 𝑆𝑐𝑎𝑙𝑒𝑑_𝐹𝑙𝑜𝑤_𝑅𝑎𝑡𝑒   (2) 
 

At the heart of the optimization process is 

the objective function, 

objective_function. This function 

quantifies how well a given set of 

parameters (a particle's position in PSO or 

an individual's genes in GA) fits the 

observed data. The goal of both PSO and 
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GA algorithms is to minimize this 

function. The objective function is based 

on a Poisson regression model, an 

appropriate choice given that the deaths 

variable represents count data (non-

negative integers). Poisson regression 

models the occurrence rate of events 

(deaths in this case) (Jahandideh-Tehrani 

et al., 2020). More precisely, the 

objective function is based on the 

negative log-likelihood of the Poisson 

distribution. Minimizing the negative 

log-likelihood is equivalent to 

maximizing the likelihood of observing 

the actual data, given the model. The 

Poisson distribution is defined by: 

𝑃(𝑌 = 𝑦) =
𝜇𝑦×𝑒(−𝜇)

𝑦!
                                        (3) 

Where y is the observed number of deaths 

and 𝜇 Is the expected number of deaths 

per unit time (the rate). The log-

likelihood is then: 

log 𝐿(𝜇) = ∑ (
𝑦𝑖 × 𝑙𝑜𝑔(𝜇𝑖)

−𝜇𝑖 − log(𝑦𝑖!)
)                       (4) 

 

Where  𝑦𝑖  is the observed number of 

deaths for observation i and 𝜇𝑖  is the 

expected number of deaths for 

observation i. The negative log-

likelihood is simply the opposite of this 

value: 

− log 𝐿(𝜇) = − ∑ (
𝑦𝑖 × 𝑙𝑜𝑔(𝜇𝑖) −

𝜇𝑖  − 𝑙𝑜𝑔(𝑦𝑖!)
)               (5) 

The expected value 𝜇 is modeled as an 

exponential function of the input 

variables and their coefficients: 

 
𝜇= exp (intercept + Water_Level_coeff ×  

Water_Level + Flow_Rate_coeff × 

Flow_Rate + interaction_coeff ×  

Flow_Water_Interaction)                                (6) 

 

To avoid overfitting, an L1 regularization 

term (Lasso) is added to the objective 

function. L1 regularization adds the sum 

of the absolute values of the coefficients 

to the loss function, which encourages 

model parsimony by reducing some 

coefficients to zero. The regularization 

term is defined by: 

 

Regularization = 𝜆𝑟𝑒𝑔 × ∑(𝑎𝑏𝑠(𝑥))             (7) 

Where 𝜆𝑟𝑒𝑔 is the regularization strength 

and x represents the coefficients. 

The combined objective function is 

therefore: 
Objective = −log L(μ)  +  Regularization     (8) 

 

The Simplified Particle Swarm 

Optimization (PSO) algorithm is a 

population-based optimization algorithm 

inspired by the social behavior of flocks 

of birds or schools of fish. A swarm of 

particles explores the solution space, with 

each particle adjusting its position based 

on its own best-known position and the 

best-known position of the entire swarm 

(Khosravi et al., 2019). Initially, the 

particle positions (X) and velocities (V) 

are randomly initialized. In addition, the 

best-known position of each particle 

(Pbest) is initialized to its initial position, 

and the most prominent position of the 

entire swarm (Gbest) is determined. 

 

At each iteration, each particle updates its 

velocity based on three factors: its 

previous velocity (inertia), a cognitive 

component (attraction to its own best 

position), and a social component 

(attraction to the swarm's best position). 

The equation governs the velocity update: 

 

V[i] = inertia_weight × V[i] + 

cognitive_coefficient×rand()× 

(Pbest[i] - X[i]) + social coefficient ×rand()× 

(Gbest - X[i])                                                   (9) 

 

Where inertia_weight controls the 

influence of the particle's previous 

velocity, cognitive_coefficient the 

influence of its own best position, 

social_coefficient the influence of the 

swarm's best position, and rand() 

generates a random number between 0 

and 1. 

The position of each particle is then 

updated by adding its velocity to its 

current position: 
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𝑋[𝑖] = 𝑋[𝑖] + 𝑉[𝑖]                                         (10) 

 

The objective function is evaluated for 

each particle's new position. If a particle's 

new position has a better fitness value 

than its previous best position, Pbest is 

updated. Similarly, if a particle's new 

position has a better fitness value than the 

swarm's best position, Gbest is updated. 

The PSO algorithm finally returns Gbest 

(the best solution found), its fitness value, 

and the history of fitness values. The 

Genetic Algorithm (GA) is another 

population-based optimization algorithm 

inspired by natural selection. A 

population of candidate solutions 

(individuals) evolves through processes 

of selection, crossover (recombination), 

and mutation. Initially, a population of 

candidate solutions is initialized with 

random values (Teng et al., 2017). At 

each iteration, individuals are selected for 

breeding based on their fitness, using a 

tournament selection method. Selected 

individuals (parents)  

exchange genetic material to create new 

offspring through a single-point 

crossover. If the parents are P1 = [a, b, c, 

d] and P2 = [e, f, g, h] and the crossover 

point is 2, then the offspring would be O1 

= [a, b, g, h] and O2 = [e, f, c, d]. 

Random modifications are introduced 

into the offspring's genomes to maintain 

diversity and explore new regions of the 

solution space. The mutation is 

performed according to the equation: 

 
offspring[i][j] = offspring[i][j]  +

 random_noise                                         (11) 

 

The objective function is evaluated for 

each offspring. The offspring then replace 

the worst-performing individuals in the 

population, ensuring gradual population 

improvement over time. The GA 

algorithm returns the best solution found, 

its fitness value, and the history of fitness 

values (Babatunde et al., 2015). After 

PSO optimization, the code uses the 

statsmodels library to fit a generalized 

linear model (GLM) with a Poisson 

family. This provides a more standard 

statistical framework for analyzing the 

relationship between predictors and the 

response variable. The GLM uses a 

Poisson distribution to model the Deaths 

variable, which is appropriate for count 

data. The log link function relates the 

linear predictor to the expected value of 

the Poisson distribution. The smf.glm 

function is used to fit the GLM. The 

formula argument specifies the model 

structure, and the data argument provides 

the data. Crucially, the start_params 

argument uses the coefficients obtained 

from the SPSO optimization as starting 

values for the GLM fitting process. This 

can help the GLM converge faster and 

more reliably. 

The glm_model.summary() method 

displays a summary of the GLM results, 

including coefficient estimates, standard 

errors, p-values, and goodness-of-fit 

statistics. The 

glm_model.pseudo_rsquared method 

computes McFadden's R-squared, a 

pseudo-R-squared for GLMs. It indicates 

the proportion of the response variable's 

variance that the model explains. The 

code displays the fitted GLM equation, 

showing the estimated coefficients for 

each predictor. 

Finally, the code includes simulation and 

visualization functions. The 

simulate_deaths function simulates the 

number of deaths for given water_level 

and flow_rate values, using the optimized 

parameters (PSO's Gbest or GA's 

best_solution). The input features 

(water_level and flow_rate) must be 

scaled using the same StandardScaler 

object that was used to scale the training 

data. This ensures that the simulation is 

performed at the same scale as the model 

was trained on. The function calculates 

the expected value mu using the GLM 

equation and then samples a value from a 
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Poisson distribution with mean mu. This 

simulates the random variation in the 

number of deaths. np.vectorize is used to 

efficiently apply the simulate_deaths 

function to a grid of water_level and 

flow_rate values. The code uses 

matplotlib to create 3D surface plots 

showing the simulated number of deaths 

as a function of water_level and flow_rate. 

This allows you to visualize the model's 

predictions and how the number of 

fatalities varies depending on different 

combinations of input characteristics. 

This code performs a comprehensive 

analysis of the relationships among water 

levels, flows, and deaths, using a 

combination of optimization algorithms 

(PSO and GA), statistical modeling 

(Poisson GLM), and simulation 

techniques. The code also includes 

visualizations to help understand the 

model's behavior and predictions. 

 

3. Results and Discussions 

3.1. Comparative analysis of 

convergence and performance of PSO 

and GA algorithms 

Figure 2 shows the performance of two 

optimization algorithms, PSO and GA, 

over iterations. The y-axis represents the 

Best Fitness (Negative Log-Likelihood + 

Regularization), and the x-axis represents 

the number of Iterations. 

 
Figure 2. Convergence Comparison  

 

In terms of global convergence, both 

algorithms, PSO (Synchronous Particle 

Swarm Optimization) and GA (Genetic 

Algorithm), aim to minimize the best 

fitness value (Negative Log-Likelihood + 

Regularization). A lower best fitness 

indicates better performance. Both 

algorithms exhibit a decreasing trend in 

the best-fitness value as the number of 

iterations increases, indicating 

convergence towards an optimal solution. 

Regarding the PSO algorithm, we 

observe a rapid improvement at the 

beginning. The PSO exhibits a rapid 

decrease in best fitness during the first 

few iterations (approximately iterations 0 

to 25). This suggests that the PSO quickly 

explores the search space and quickly 

finds promising solutions. The PSO 

convergence value converges to a best 

fitness of approximately -97.02. The PSO 

convergence speed appears to converge 

relatively soon, with most of the 

improvements occurring during the first 

25 iterations. After that, the change in 

best fitness is minimal. In terms of final 

performance, the PSO achieves a better 

best fitness value (-97.02) than the GA (-

96.51), indicating that it finds a slightly 

better solution in this particular run. 

Regarding the GA algorithm, we observe 

a slower initial improvement. The GA 

shows a slower initial decrease in best 

fitness compared to the PSO. This 
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suggests that the GA can take more 

iterations to explore the search space and 

find good solutions. The GA’s 

convergence value converges to a best 

fitness of approximately -96.51. The 

GA’s convergence speed converges more 

slowly than the PSO. The improvement in 

best fitness is more gradual over the 

iterations. In terms of final performance, 

the GA’s final best fitness value (-96.51) 

is slightly worse than that of the PSO (-

97.02), indicating that it did not find as 

optimal a solution as the PSO in this run. 

In terms of convergence speed, the PSO 

converges faster than the GA, achieving 

most of its improvements in the first few 

iterations. In terms of final performance, 

the PSO achieves a slightly higher best 

fitness value than the GA, suggesting a 

better final solution. In terms of algorithm 

behavior, PSO appears to be more 

efficient at quickly finding a good 

solution, while GA explores the search 

space more gradually. 

In this convergence comparison, PSO 

appears to be the best-performing 

algorithm for this specific problem. It 

converges faster and achieves a slightly 

higher best fitness value than GA. 

However, it is essential to note that these 

results are specific to this particular run 

and problem. Algorithm performance 

may vary depending on the problem's 

characteristics and the parameters set by 

the algorithms. 

 

3.2. Statistical modeling and 

simulation of flood-related deaths: 

Comparison of algorithms 

In this analysis, we examine the 

performance of the model used to predict 

flood-related deaths in Boma, based on 

cross-validation fitness values, as well as 

the results of the generalized linear model 

(GLM) presented in Table 2.  

First, the fitness values are concerning. 

The root mean square error (RMSE) is 

8.37, meaning that, on average, the 

model's predictions deviate from the 

actual values by 8.37 units. This high 

value indicates significant inaccuracies in 

the model, which is particularly 

problematic for flood fatality predictions. 

Furthermore, the mean absolute error 

(MAE) is 6.42, which reinforces the idea 

of unsatisfactory model performance, as 

it indicates an average prediction error of 

6.42 units. Regarding the coefficient of 

determination 𝑅², its value is -4.04. A 

negative 𝑅² is alarming because it 

suggests that the model cannot explain 

the data's variance better than a simple 

mean. This suggests a poor fit of the 

model to the data. 

Table 2 provides general information 

about the fitted model, including the 

dependent variable, number of 

observations, model family, link function, 

log-likelihood, deviance, and pseudo R-

squared.

Table 2. Results of the Stats models Generalized Linear Model (GLM) 
Generalized Linear Model Regression Results 

Dep. Variable Deaths No. Observations 10 

Model GLM Df Residuals 6 

Model Family Poisson Df Model 3 

Link Function Log Scale 1.000 

Method IRLS Log-Likelihood -19.269 

Date: Sun, 11 May 2025 Deviance 21.522 

Time 21:04:57 Pearson chi2 17.5 

No. Iterations: 6 Pseudo R-squ. (CS): 1.000 

 

The model used is a generalized linear 

model (GLM) with a Poisson distribution 

and a logarithmic link function. This is 

appropriate because the number of deaths 

is a discrete, non-negative variable, 

which fits well with a Poisson distribution. 

The logarithmic link function transforms 

a linear combination of predictors into an 
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occurrence rate (the expected number of 

deaths). To understand the statistical 

model's overall performance, several key 

elements must be examined. First, the 

variable being explained, or predicted, is 

the number of deaths. The model was 

built using 10 observations. It is 

important to note that this relatively small 

number of observations can potentially 

make the results less reliable and more 

sensitive to extreme or atypical values. 

Next, we consider the residual degrees of 

freedom, which amount to 6. This figure 

shows the difference between the total 

number of observations and the number 

of parameters the model must estimate, 

including the intercept and the 

coefficients for the various explanatory 

variables. Furthermore, the model uses 3 

predictors: water depth, river discharge, 

and their interaction. The model scale is 

1.0000. In the context of a Poisson model, 

this value is ideal if the model is correctly 

specified. The log-likelihood, which 

measures how well the model fits the data, 

is -19.269. The higher (i.e., less negative) 

this value, the better the model fit. The 

deviance, which quantifies the difference 

between the current model and a perfect 

(so-called saturated) model, is 21.522. A 

lower deviance indicates that the model is 

closer to an ideal fit to the data. Pearson's 

chi-square, another measure of fit, is 17.5. 

Cameron and Windmeijer's pseudo R-

squared, which attempts to quantify the 

proportion of variance explained by the 

model, is 1.000. Although this may seem 

excellent, such a high value should be 

interpreted with caution, as it may 

indicate overfitting, particularly given the 

small number of observations. The 

estimation algorithm required six 

iterations to converge on a solution. 

Finally, the covariance type used is non-

robust, meaning that the standard errors 

of the estimated coefficients are not 

protected against potential violations of 

model assumptions, such as 

heteroscedasticity. 

 

Table 3 presents the estimated 

coefficients for each variable in the model, 

along with their standard errors, z-

statistics, p-values (P>|z|), and 

confidence intervals.

 
Table 3. Regression Coefficients of the Generalized Linear Model (GLM) 

Covariance Type 
nonrobust 

coef std err z P>|z [0.025      0.975] 

Intercept -0.422 0.464 -0.910 0.363 -1.330       0.487 

Water_Level 0.695 0.359 1.938 0.053 -0.008       1.398 

Discharge -1.273 0.646 -1.972 0.049 -2.538      -0.008 

Flow_Water         

_Interaction 
1.595 0.446 3.575 0.000 

0.721       2.470 

 

To fully understand how the water level 

and discharge of the Kalamu River 

influence the number of deaths during 

floods, it is essential to consider the 

coefficients of the variables in the 

statistical model. Because the model is 

logarithmic, these coefficients do not 

translate directly into linear changes in 

the number of deaths but rather into 

multiplicative changes in the death rate. 

First, the model's intercept is -0.4218. 

Taking the exponential of this value 

(exp(-0.4218) ≈ 0.656), we obtain an 

estimate of the expected death rate when 

all other variables are zero. However, this 

value must be interpreted with caution, as 

it may not be realistic or meaningful to 

assume that the water level and discharge 

are simultaneously zero. Second, the 

coefficient for water level is 0.6952. This 

means that for every unit increase in 

water depth, the death rate is 
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approximately doubled (exp(0.6952) ≈ 

2.004). Thus, an increase in water depth 

is associated with a significant increase in 

the number of deaths. It should be noted 

that the p-value for this coefficient is 

0.053, indicating marginal significance at 

the 0.05 level. The coefficient for river 

discharge is -1.2731. Taking the 

exponential of this value (exp(-1.2731) ≈ 

0.280), we find that for every unit 

increase in discharge, the death rate is 

multiplied by approximately 0.280. This 

suggests that increased discharge is 

associated with a significant decrease in 

mortality. The p-value of 0.049 for this 

coefficient is significant at the 0.05 level. 

Finally, the interaction term between 

discharge and water depth is substantial. 

Its coefficient is 1.5954, which means 

that the effect of water depth on the 

number of deaths depends on discharge, 

and vice versa. More precisely, for each 

unit increase in the interaction, the death 

rate is multiplied by approximately 4.929 

(exp(1.5954) ≈ 4.929). The p-value of 

0.000 associated with this interaction 

term is highly significant, confirming its 

importance in the model. 

These coefficients suggest that water 

depth, when considered alone, tends to 

increase the number of deaths during 

floods. Conversely, river discharge, when 

considered alone, tends to decrease the 

number of deaths. However, the 

interaction between these two variables is 

crucial, as it indicates that the effect of 

one on the number of deaths depends on 

the value of the other. For example, high 

discharges could mitigate the negative 

impact of high water levels by allowing 

water to drain more quickly, thereby 

reducing flood risks. Conversely, high 

water levels combined with low 

discharges could exacerbate risks and 

lead to more deaths. 

The equation for the Generalized Linear 

Model (GLM) simulated using the SPSO 

and GA algorithms to predict the number 

of deaths is as follows: 

 
𝐷𝑒𝑎𝑡ℎ𝑠 =

exp (
−0.42 + 0.7 × 𝑊𝑎𝑡𝑎𝐿𝑒𝑣𝑒𝑟 − 1.27 ×

𝐹𝑙𝑜𝑤𝑅𝑎𝑡𝑒 + 11.60 ×
𝐹𝑙𝑜𝑤_𝑊𝑎𝑡𝑒𝑟_𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛

)  (12) 

 

Where Water Level represents the water 

level, Discharge represents the discharge, 

and Flow Water Interaction represents the 

interaction between water level and 

discharge. The McFadden R-squared for 

this model is 0.999, indicating an 

excellent fit to the data. 

The model equation, Deaths = exp(-0.42 

+ 0.70 × Water_Level + -1.27 × 

Flow_Rate + 1.60 × 

Flow_Water_Interaction), provides a 

mathematical representation of the 

relationship between the variables. This 

equation expresses the expected number 

of deaths as a function of water level 

(Water_Level), river discharge 

(Flow_Rate), and their interaction 

(Flow_Water_Interaction). Specifically, 

the equation indicates that the number of 

deaths equals the exponential of a linear 

combination of the explanatory variables. 

The term -0.42 represents the intercept, 

which is a constant. The term 0.7 × 

Water_Level suggests that an increase in 

water level is associated with an increase 

in deaths (since the coefficient is positive). 

The term -1.27 × Flow_Rate indicates 

that an increase in discharge is related to 

a decrease in the number of deaths (since 

the coefficient is negative). Finally, the 

term 1.60 × Flow_Water_Interaction 

captures the combined effect of water 

level and discharge, and its positive 

coefficient indicates that their interaction 

increases the number of deaths. It is 

important to note that, due to the 

exponential function, the effects of the 

variables are not linear. This means that 

the impact of an increase in water level or 

discharge on the number of deaths 

depends on the current value of these 
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variables. Furthermore, the interaction 

between water level and discharge further 

complicates interpretation, as it indicates 

that the effect of water level on the 

number of deaths depends on discharge, 

and vice versa. To understand how the 

water level and discharge of the Kalamu 

River influence the number of deaths 

during floods, it is essential to analyze the 

model equation and the McFadden R-

squared value. Let's start with 

McFadden's R-squared, which is 0.999, 

but this high value could be misleading 

and indicate overfitting given the small 

number of observations. This value, 

extremely close to 1, suggests that the 

model explains almost all the variance in 

the number of deaths. In other words, the 

model appears to capture virtually all the 

information in the data regarding the 

relationships among water level, 

discharge, and the number of deaths. 

However, it is crucial to interpret this 

value with great caution, as such 

proximity to 1 may signal overfitting of 

the model to the training data. This means 

the model could be overly specific to the 

data used for its estimation and perform 

poorly when applied to new data. 

The model equation and McFadden's R-

squared value suggest that water level, 

discharge, and their interaction are 

important factors influencing the number 

of deaths during floods. However, it is 

crucial to consider the risk of overfitting 

and interpret the results with caution, 

particularly given the nonlinear and 

interactive nature of the relationships 

between variables. 

Table 4 presents the exponential 

coefficients for the Boma flood-related 

death prediction model. 
 

Table 4. Exponential Coefficients and 

Interpretations of Model Parameters 
Parameter Rate ratio p-value 

Intercept 0.6559 0.363 

Water_Level 2.004 0.0526 

Discharge 0.280 0.0486 

Flow_Water_Interaction 4.930 0.0004 

Let's start with the intercept, which has a 

rate ratio of 0.6559. This coefficient 

represents the log of the death rate when 

all explanatory variables are zero. A rate 

ratio less than 1 indicates that, in the 

absence of other variables, the model 

predicts fewer deaths than the reference 

average. This suggests that, in this 

hypothetical scenario, the death rate is 

relatively low. However, the associated 

p-value of 0.3629 is high and exceeds 

0.05. This means that the intercept is not 

statistically significant, preventing us 

from concluding that it has a tangible 

impact on the number of deaths. It is 

therefore prudent not to give this value 

undue weight in the overall interpretation 

of the model. Regarding water level, the 

rate ratio is 2.0040. This means that a 

one-unit increase in water level is 

associated with an approximately 100.4% 

increase in the death rate. This 

observation suggests that water levels 

have a positive, potentially significant 

effect on the risk of death from flooding. 

The p-value of 0.0526, while close to 

significance, does not conclusively reach 

this threshold. This indicates a trend 

toward water levels affecting deaths, but 

the evidence is not strong enough to 

definitively establish this impact in the 

context of this study. Next, discharge 

displays a rate ratio of 0.2800. This 

indicates that a one-unit increase in 

discharge is associated with an 

approximately 72% decrease in the death 

rate. This relationship suggests that 

higher flow rates could have a protective 

effect, potentially by promoting better 

water circulation and reducing the risk of 

stagnant water accumulation. The p-value 

of 0.0486, less than 0.05, indicates that 

this coefficient is statistically significant. 

Thus, we have sufficient evidence to 

conclude that flow rate has a tangible 

impact on the number of deaths, and an 

increase in flow rate is associated with a 

significant reduction in the risk of death. 
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Finally, the interaction between water 

level and flow rate has a rate ratio of 

4.9301. This high figure indicates that a 

one-unit increase in this interaction is 

associated with an approximately 393% 

increase in the death rate. This 

underscores the importance of 

considering the combined effect of these 

two variables, suggesting that their 

interaction plays a crucial role in the risk 

of death. The corresponding p-value is 

0.0004, indicating that the interaction 

effect is highly significant. This shows a 

high probability that this interaction has a 

tangible impact on the number of deaths, 

thereby justifying its inclusion in the 

model. 

The analysis of the exponential 

coefficients and p-values provides 

valuable insights into the factors 

influencing flood-related deaths in Boma. 

Water level and discharge, as well as their 

interaction, appear to be key determinants 

of the risk of death. The statistical 

significance of the discharge and 

interaction coefficients underscores the 

importance of careful flood management, 

as these factors can have significant 

implications for public safety. 

These results highlight the importance of 

integrated water resource management, 

which considers not only water level but 

also discharge, to minimize risks and 

ensure the safety of vulnerable 

communities. 

Information criteria, such as Akaike 

Information Criterion (AIC) of 37.06 and 

Bayesian Information Criterion (BIC) of 

3.73, show that lower values would be 

preferable for assessing model quality. 

Multicollinearity analysis indicates that 

Water_Level has a variance inflation 

factor (VIF) of 1.37 (acceptable). In 

contrast, Flow_Rate and 

Flow_Water_Interaction have VIFs of 

3.70 and 3.25, respectively, indicating 

moderate multicollinearity that may 

affect the stability of the estimates. 

Figure 3 illustrates the display of residual 

plots, fitted plots, and model errors. 

 
Figure 3. Residuals and Fitted Values 

 

Figure 3 shows the relationship between 

residuals and predicted values. Most 

residuals being close to zero indicates that 

the model predicts relatively well for the 

majority of observations. However, an 

anomalous point that deviates 

significantly could signal an influential 

observation or a potential data problem. 
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Figure 4 illustrates the interaction effect 

via contour lines with confidence bands, 

relating it to hydrological processes (flow 

and water level). 

 
Figure 4. Sensitivity Analysis of the Interaction Effect 

 

Figure 4 shows how the interaction 

coefficient between water level and 

discharge varies with the interaction 

factor. A decreasing trend is observed, 

suggesting that the combined effect of 

these variables on the number of deaths 

decreases as the interaction is stronger. 

This could indicate that at higher levels of 

interaction, the effects of each variable on 

deaths are attenuated, which is essential 

for risk management. 

Table 5 presents the values of water level 

(Water_Level_Scaled), discharge 

(Flow_Rate_Scaled), and number of 

deaths (Deaths) for each observation. The 

Water_Level_Scaled and 

Flow_Rate_Scaled columns indicate that 

the water level and discharge values have 

been scaled or normalized. 
 

Table 5. Scaled Value Set 
N° Water_Level_Scaled Flow_Rate_Scaled Deaths 

0 -1.489 -0.530 3 

1 1.221 1.133 0 

2 -0.699 0.030 0 

3 -0.837 -0.063 0 

4 0.947 -0.111 4 

5 1.599 2.323 40 

6 -0.082 -1.057 0 

7 0.707 -1.354 2 

8 -0.357 -0.182 2 

9 -1.009 -0.190 0 

 

First, let's examine the scaled data 

presented in Table 5. We observe a 

relationship between water level, 

discharge, and the number of deaths. For 

example, when the water level and 

discharge are high (row 5), the number of 

deaths is also high (40). Conversely, 

when the water level and discharge are 

low (rows 2, 3, 6, and 9), the number of 

deaths is generally low (0). However, 

there are exceptions, such as row 1, where 

the water level and discharge are high but 

the number of deaths is low (0). This 

suggests that urbanization factors could 

also influence the number of deaths 

during floods. 
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Table 6 presents a statistical comparison 

of the ability of the PSO (Simplified 

Particle Swarm Optimization) and GA 

(Genetic Algorithm) algorithms to 

reproduce real-world data on water levels, 

discharge, and deaths. T-test results, 

including t-statistics and p-values, are 

presented for each variable and algorithm. 

 
Table 6. Statistical comparison of the ability of PSO and GA algorithms to reproduce real water level, 

discharge, and number of deaths data (T tests) 
Variable Real data and PSO algorithm Real data and the GA algorithm 

T-test: t-statistic p-value T-test: t-statistic p-value 

Water Level    

Scaled 

0.027 0.979 -0.771 0.451 

Discharge       

Scaled 

0.477 0.639 -0.865 0.399 

Deaths 0.051 0.960 0.202 0.842 

The statistical results of the T-tests show 

that there is no statistically significant 

difference between the actual data and the 

results simulated by the PSO and GA 

algorithms. This suggests that these 

algorithms can realistically model the 

relationships among water level, 

discharge, and the number of deaths 

during floods. However, it is essential to 

note that these statistical results do not 

prove that the algorithms are perfect, but 

rather that they can capture the main 

trends observed in the actual data.  

When analyzing bootstrap confidence 

intervals for model coefficients, it is 

essential to note the observed variability. 

These confidence intervals provide an 

estimate of the uncertainty associated 

with each coefficient, which is crucial for 

interpreting the model's results. To begin 

with, the confidence interval for the 

intercept ranges from -40.7786 to 

16.7376. This wide range indicates 

significant uncertainty in the intercept 

value, suggesting that, under certain 

conditions, the model's impact can vary 

considerably. For the coefficient 

associated with water level, the 

confidence interval is -9.9187 to 61.3772. 

Again, this range suggests significant 

variability in the effect of water level on 

the number of deaths. The presence of 

negative values indicates that, in some 

situations, an increase in water level may 

not necessarily lead to a rise in deaths, 

raising questions about the proper 

relationship between these variables. For 

discharge, the confidence interval ranges 

from -75.5325 to 48.8561. This result 

also highlights the uncertainty 

surrounding the effect of discharge on 

deaths. As with water levels, the presence 

of negative values in this interval means 

that increases in discharge may be 

associated with decreases in fatalities in 

some cases, but with increases in others. 

Finally, for the interaction term between 

water level and discharge, the confidence 

interval is -38.7170 to 59.0501. This 

equally wide interval reveals 

considerable uncertainty about how the 

interaction between these two variables 

influences the number of deaths. This 

suggests that the combined effect of these 

factors is complex and can vary 

considerably depending on the conditions. 

Overall, these wide confidence intervals 

indicate significant uncertainty in the 

coefficient estimates. This highlights the 

need for caution when interpreting model 

results, as such variability raises 

questions about the robustness of 

conclusions drawn from the current data. 

Figure 5 visualizes the simulated deaths 

as a function of water level and flow rate 

from the PSO and GA algorithms above.  
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Figure 5. 3D surface of simulated deaths as a function of water level and flow rate from the PSO and GA 

algorithms 

 

Based on Figure 5, which plots simulated 

deaths as a function of the Kalamu River's 

water level and discharge, several key 

insights can be derived about the impact 

of flooding. First, the figure highlights a 

direct relationship between water level, 

discharge, and the number of deaths. In 

other words, the higher the water level 

and discharge, the more simulated deaths 

occur. This observation supports the idea 

that flood intensity, as measured by these 

two parameters, is a determining factor in 

the impact on populations. Second, the 

figure allows us to visualize the critical 

thresholds where the risk of death 

increases significantly. By observing 

areas where the graph's surface rises 

sharply, we can identify the water levels 

and discharges at which the number of 

simulated deaths increases significantly. 

These thresholds can serve as reference 

points for flood risk planning and 

management, allowing alert and 

evacuation measures to be triggered when 

these levels are reached or exceeded. 

Furthermore, the figure compares the 

results from two different simulation 

algorithms, PSO and GA. By comparing 

the two graphs, the robustness of the 

results can be assessed, and the areas 

where the two algorithms converge or 

diverge can be identified. This 

comparison helps increase confidence in 

the conclusions drawn from the figure 

and better understand the uncertainties 

associated with the simulations. Finally, 

the figure can serve as a communication 

tool to raise public and decision-maker 

awareness about the impact of flooding. 

By presenting a clear, intuitive 

visualization of the relationships among 

water level, discharge, and the number of 

deaths, the figure can help mobilize 

resources and implement more effective 

flood risk prevention and management 

measures. This figure is a valuable tool 

for understanding the impact of flooding 

on the Kalamu River. It highlights the 

relationships among water level, 

discharge, and the number of deaths; 

identifies critical thresholds; and 

compares simulation results from 

different algorithms. By serving as a 

communication tool, it facilitates public 

awareness and informed decision-making. 

The ability of PSO and GA algorithms to 

realistically model the relationships 

among these parameters enhances their 

usefulness for planning and risk 

management. 
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Outre la comparaison des performances 

des algorithmes PSO et GA dans la 

modélisation prédictive des décès liés aux 

inondations à Boma, le résultat 

mentionné ci-dessus répond aux 

exigences d'évaluation rapportées par les 

chercheurs suivants. 

 

Figure 2 compares the performance of the 

Simplified Particle Swarm Optimization 

(PSO) and Genetic Algorithm (GA) 

algorithms over iterations. Both 

algorithms aim to minimize the fitness 

value, with lower values indicating better 

performance. PSO shows rapid 

improvement from the beginning, 

reaching a convergence of approximately 

-97.02, which is higher than GA's -96.51. 

GA, on the other hand, progresses more 

slowly and requires more iterations to 

explore the search space. These results 

show that PSO is more effective at 

quickly finding reasonable solutions. For 

example, Chapi et al. (2017) 

demonstrated that a hybrid artificial 

intelligence approach can improve flood 

risk assessment, as evidenced by the 

effectiveness of PSO for similar 

modeling problems. Furthermore, Deng 

et al. (2022) used hybrid approaches 

combining optimization algorithms for 

water level forecasting, highlighting the 

importance of convergence speed in 

complex settings. However, some studies, 

such as Di Baldassarre et al. (2013), warn 

of the risk of overfitting when algorithms 

achieve excellent performance on small 

training datasets. This concern may also 

apply to the results observed here. 

Interpreting the results of the model used 

to predict flood-related deaths in Boma 

reveals several significant concerns. First, 

the fitness values are alarming. The root 

mean square error (RMSE) is 8.37, 

meaning that, on average, the model's 

predictions deviate from the actual values 

by about 8.37 units. This high figure 

indicates that the model has significant 

inaccuracies, making flood-related death 

predictions particularly problematic. 

Furthermore, the mean absolute error 

(MAE) is 6.42, reinforcing the 

impression of unsatisfactory performance, 

as this indicates that prediction errors are, 

on average, 6.42 units. Regarding the 

coefficient of determination 𝑅², its value 

is -4.04. A negative 𝑅² is particularly 

concerning because it indicates that the 

model fails to explain the data's variance 

better than a simple mean. This suggests 

a poor fit of the model to the data, calling 

for a reevaluation of the variables and 

modeling methods used. The results of 

the generalized linear model (GLM) 

confirm these concerns. The model, 

which uses a Poisson distribution, has 

only 10 observations, which is relatively 

low for robust analysis. The log-

likelihood is -19.269, and the deviance is 

21.522. A lower deviance value would 

have been desirable, as it would indicate 

a better fit. Also note that the pseudo-𝑅² 

is 1.000, but this value can be misleading 

and may indicate overfitting, especially 

with so few observations. Examining the 

variable coefficients reveals that the 

intercept is -0.4218, which is not 

significant. For water level, the 

coefficient is 0.6952 (p = 0.053), 

indicating that higher water levels are 

associated with more deaths. On the other 

hand, discharge has a coefficient of -

1.2731 (p = 0.049), suggesting that an 

increase in discharge is related to a 

decrease in deaths. The interaction term, 

on the other hand, has a coefficient of 

1.5954 (highly significant, p < 0.001), 

highlighting that the combined effect of 

water level and discharge on deaths is 

strong. Exponential coefficient analysis 

reveals that the intercept (0.6559) is not 

significant (p = 0.3629). Water level 

(ratio of 2.0040; p = 0.0526) may increase 

the death rate. On the other hand, flow 

rate (0.2800, p = 0.0486) reduces the risk 

of death. The interaction between the two 
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(4.9301, p = 0.0004) is highly significant, 

highlighting the importance of integrated 

water resource management. Information 

criteria, such as the AIC (37.06) and BIC 

(3.73), indicate that lower values are 

preferable for assessing model quality. 

Analyzing multicollinearity, variance 

inflation factors (VIFs) suggest that water 

level has a VIF of 1.37 (acceptable). In 

contrast, discharge and the interaction 

term have VIFs of 3.70 and 3.25, 

respectively, suggesting moderate 

multicollinearity that may affect the 

stability of the estimates. T-tests show 

that there is no significant difference 

between the actual data and the results 

simulated by the PSO and GA algorithms, 

suggesting that these algorithms can 

realistically model the relationships 

between water level, discharge, and 

deaths. Bootstrap confidence intervals for 

the coefficients show significant 

variability. For example, the interval for 

the intercept is [-40.7786, 16.7376], 

while the interval for the water level is [-

9.9187, 61.3772]. These wide intervals 

indicate significant uncertainty in the 

coefficient estimates, highlighting the 

need to interpret the results with caution. 

Several studies corroborate these results. 

Babatunde et al. (2015) demonstrated the 

importance of comparing algorithms to 

identify the best applications, which is 

relevant to PSO and GA applications. 

Chapi et al. (2017) highlight how hybrid 

approaches can improve flood-

susceptibility assessment, while Deng et 

al. (2022) highlight the use of hybrid 

methods for water-level forecasting. Di 

Baldassarre et al. (2013) discuss human 

and aquatic systems relevant to flooding. 

Furthermore, Khosravi et al. (2019) and 

Hoang and Liou (2024) demonstrate the 

effectiveness of flood forecasting models, 

reinforcing the need for advanced 

methods to achieve accurate forecasts. 

The contribution of this study lies in 

identifying gaps in current predictive 

models for flood-related deaths and in 

proposing solutions to improve them. By 

integrating advanced approaches and 

rigorously evaluating the factors 

influencing forecasts, this research paves 

the way for significant improvements in 

flood risk management and the protection 

of vulnerable populations. 

To improve the model's performance, 

several recommendations can be made. It 

would be appropriate to increase the 

number of observations to improve 

robustness. Furthermore, exploring new 

variables or using advanced modeling 

techniques, such as hybrid models 

combining machine learning and 

traditional methods, could improve the 

results. Finally, further validation of the 

models with real-world data could 

strengthen the reliability of flood-related 

death predictions. 
 

4. Conclusions 

The study presents an in-depth analysis of 

flood dynamics in Boma, Democratic 

Republic of Congo, by integrating 

optimization algorithms, including PSO 

(Simplified Particle Swarm Optimization) 

and Genetic Algorithms (GA), to model 

flood-related deaths. The results support 

the hypothesis that a combination of 

advanced methods can improve the 

accuracy of flood-mortality predictions 

by accounting for the complex 

interactions between water levels and 

river discharge. The research objectives 

were achieved through a rigorous 

methodology that included accurate data 

collection, data preprocessing, and the 

application of appropriate statistical 

models. The results showed that an 

increase in water level is directly 

associated with a significant increase in 

deaths, whereas an increase in discharge 

tends to reduce this risk. However, the 

interaction between these two variables is 

crucial, suggesting that high water levels 

with low discharge can exacerbate flood 
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risks. Building on previous studies, this 

research is part of a broader approach to 

flood risk modeling and corroborates the 

findings of similar work across various 

geographical contexts. Studies on urban 

flooding have revealed comparable 

dynamics, in which interactions among 

hydrological variables play a determining 

role in risk predictions. The results of this 

study also highlight the importance of 

selecting optimization algorithms tailored 

to the problem's specific characteristics. 

PSO proved to be more effective than GA 

for this application, achieving faster 

convergence and better overall 

performance. However, it is essential to 

remain vigilant regarding the risks of 

overfitting, especially with a limited 

number of observations. This research 

offers valuable insights into flood risk 

management in Boma and, potentially, in 

other similar regions. The conclusions 

drawn can guide decision-makers in 

developing risk mitigation strategies, 

thereby promoting better preparedness 

for extreme events. The integration of 

statistical results and 3D visualizations 

enables effective communication of 

flood-related issues, thereby increasing 

awareness and community engagement in 

natural disaster prevention. 
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