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This study examines river dynamics and flooding in the town of Boma,
Democratic Republic of Congo, where vulnerability to flooding is
increased by climate change and anthropogenic pressures. This study
aims to address gaps in flood-related fatality prediction by developing a
predictive model incorporating the interaction between the Congo River
water level and the Kalamu River discharge. The objectives include using
a generalized linear model (GLM) with a Poisson distribution, combined
with optimization algorithms such as particle swarm optimization (PSO)
and genetic algorithms (GA). The methodology relies on the collection
of historical data on water levels, discharges, rainfall, and fatalities,
followed by rigorous data analysis using preprocessing and optimization
techniques. The results show that PSO outperforms GA in terms of
convergence speed and efficiency, achieving a better fitness value.
Fitness values reveal an RMSE of 8.37, an MAE of 6.42, and an R? of -
4.04, indicating significant inaccuracies in the forecasts. Simulations
reveal a direct relationship between water level, discharge, and deaths,
highlighting the importance of these interactions for risk management.
These results provide valuable tools for infrastructure planning and
raising awareness of the impact of floods on vulnerable populations, thus
contributing to more effective prevention strategies.

1. Introduction

particularly susceptible to flooding, a risk

River dynamics and flooding pose a
growing threat to riverine populations,
particularly in vulnerable regions (Jian et
al., 2021), such as Boma, a town located
along the Congo River in the western part
of the Democratic Republic of Congo and
crossed by the Kalamu River. Boma's
geographical ~ location  makes it

exacerbated by climate change and
anthropogenic ~ pressures on  river
ecosystems. This vulnerability is all the
more worrying because it is further
compounded by climate change and
anthropogenic ~ pressures on  river
ecosystems. Extreme events, such as
floods, are becoming increasingly
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frequent, endangering populations living
in riparian areas. According to the
technical services of Congolaise des
Voies Maritimes (CVM) (the Congolese
Maritime Authority), "If this rate of rising
waters of the Congo River continues,
there would be an overflow of the
Kalamu River and its tributaries beyond
their banks,” recalling the devastating
events of 2016 that put the town of Boma
at risk. Indeed, a critical gap persists in
accurately predicting flood-related deaths,
particularly in combining hydrological
data, advanced statistical modeling, and
optimization techniques (Tien Bui et al.,
2016). Recent scientific literature
highlights the growing importance of
predictive  modeling in  disaster
management, as demonstrated by the
study by Qi et al. (2021), which
highlights the applications of urban flood
models in  mitigation  strategies
(Fernandez & Lutz, 2010; Hoang & Liou,
2024; Jian et al., 2021; Zhao et al., 2019).
However, many existing models face
limitations, including their inability to
fully capture nonlinear interactions
between key variables such as water level
and discharge, which compromises the
reliability of risk assessments.

To address this imperative, this study
aims to develop a robust and innovative
predictive model for flood-related deaths
in Boma. The originality of this approach
lies in its ability to explicitly account for
the complex interaction between the
Congo River water level and the Kalamu
River discharge, relying on a combination
of advanced methods. The research
objectives are threefold: to statistically
model the relationship between water
level, discharge, and flood-related deaths
using a generalized linear model (GLM)
with a Poisson distribution, leveraging
the flexibility and power of this statistical
approach to capture nonlinear
relationships; to optimize the GLM
parameters using a hybrid approach

combining simplified particle swarm
optimization  (PSO) and  genetic
algorithms (GA), to efficiently explore
the parameter space and identify optimal
configurations; and to simulate flood
scenarios and visualize the predicted
impact on mortality rates using 3D
surface plots, to facilitate communication
of results and support decision-making.
Previous research, such as Khosravi et al.
(2019) and Teng et al. (2017),
demonstrates  the  importance  of
optimization in flood risk modeling,
highlighting  the  effectiveness  of
optimization algorithms in this context
(Barbulescu, 2025; Chapi et al., 2017,
Deng et al., 2022; Jahandideh-Tehrani et
al., 2020; Kalantar et al., 2021; Tien Bui
etal., 2016; Tuyen et al., 2021; Yu et al.,
2023; Zhen & Barbulescu, 2025). To
achieve  these  ambitious  goals,
comprehensive historical data on Congo
River water levels (1960-2017), Kalamu
River discharges, rainfall, evaporation
(1992-2023), and flood-related deaths
were collected from reliable sources, such
as the CVM in Boma, the Boma weather
station, and local flood documentation.
These data  underwent  rigorous
preprocessing, including scaling of
water-level and discharge variables, to
ensure comparability and suitability for
statistical models. The PSO and GA
algorithms were carefully implemented
and calibrated to optimize model
parameters, minimizing an objective
function defined as the negative log-
likelihood of the Poisson distribution plus
an L1 regularization term to avoid
overfitting and ensure robustness.
Previous studies, such as Lui et al. (2023),
Mudashiru et al. (2021), and Fernandez
and Lutz (2010), highlight the importance
of data preparation and model
optimization in flood forecasting.

Finally, the optimized model was used to
simulate realistic flood scenarios, and the
predicted mortality rates were visualized
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using 3D surface plots, enabling intuitive
interpretation of the results. This
integrated and rigorous approach will
improve our understanding of the
complex flood dynamics and their impact
on human lives in the Boma region and
provide valuable tools for risk
management and decision-making. The
theoretical framework underlying this
research draws on several key areas:
hydrological modeling (Hassan et al.,
2021), statistical regression (Noor et al.,
2022; Rima et al., 2025; Nguyen, 2020),
and optimization algorithms.
Hydrological modeling provides a basis
for understanding the relationships
among rainfall, river discharge, and water
levels. Statistical regression, particularly
GLM with a Poisson distribution, offers a
powerful tool for modeling count data,
such as the number of flood-related
deaths, while accounting for multiple
predictor variables. Optimization
algorithms, such as PSO and GA, provide

13 13
1 1

efficient methods for finding the best set
of model parameters to minimize
prediction errors. Moreover, model
regularization is crucial for avoiding
overfitting and ensuring generalization to
new data. Previous research, such as that
by Di Baldassarre et al. (2013) and
Rentschler et al. (2022), highlights the
importance of these concepts for
developing effective predictive models.

2. Materials and Methods
2.1. Presentation of

environment

The study was conducted in the town of
Boma and in the Kalamu River catchment,
as shown in Figures 1 and 2. Before
flowing into the Congo River near the
port of Boma, the Kalamu River flows
through three communes of the town:
Kabondo, Nzadi, and Kalamu. The
catchment of the Kalamu River covers an
area of 68.84 km2 with a perimeter of 44.4
km.

the study
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Figure 1. Catchment of the Kalamu River at Boma
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2.2. Data collection

Crucial data were collected from various
sources (Table 1). The CVM in Boma
recorded water levels of the Congo River
from 1960 to 2017. Monthly precipitation
and evaporation data were obtained from
the Boma meteorological station,

covering the period from 1992 to 2023.
Historical information on Kalamu River
flows and the number of deaths in years
corresponding to floods was provided by
flood-related documentation in Boma.
Table 1 illustrates the data for the flood
study variables.

Table 1. Variables associated with flooding in Boma by year

Water level

Discharge of the

Number of

Year of floods  of t_he Congo Ri\C/::ranI]go d Kalamu River on deaths from prec::pli?gtciiodna%mm)
River (m) flood day (m3s) flooding
23/12/1985 2.6 Large 20.53 3 207.9
12/12/1999 3.39 Large 36.32 0 365.8
30/12/2000 2.83 Large 25.85 0 260.6
20/12/2010 2.79 Large 24.97 0 252.1
12/12/2015 331 Large 2451 4 247.1
26/12/2016 35 Large 47.62 40 458.6
05/12/2018 3.01 Large 15.53 0 158.1
26/11/2019 3.24 Large 12.71 2 129.7
03/11/2021 2.93 Large 23.84 2 240.9
03/12/2022 2.74 Large 23.76 0 240
2.3. Combination of optimization Where X represents the original variable,

algorithms (PSO and GA), statistical
modeling  (Poisson GLM), and
simulation techniques

The analysis begins with data preparation.

Historical data from the Python
Anaconda software, including year, water
level, discharge, number of deaths, and
precipitation, is loaded into a Pandas
DataFrame. To  ensure  optimal
performance of the  optimization
algorithms, a feature scaling step is
performed on the Water Level and
Flow _Rate  variables using the
StandardScaler class from scikit-learn
(Chapi et al., 2017). This transformation
prevents variables with a wide range of
values from exerting disproportionate
influence on the optimization process.
The scaling is performed according to the
following equation:

X Scaled = (%‘&m)

@)

mean (X) is its mean, and std (X) is its
standard deviation (Deng et al., 2022).
Next, an interaction term,
Flow_Water_Interaction, is created by
multiplying the scaled values of
Water_Level and Flow_Rate. This new
variable is intended to capture potential
nonlinear relationships between water
level and discharge and their combined
impact on the number of deaths. The
calculation of this interaction term is
defined by:

Flowwaterlnteraction

Scaled_Water_Level X Scaled_Flow_Rate (2)

At the heart of the optimization process is
the objective function,
objective_function. This  function
quantifies how well a given set of
parameters (a particle's position in PSO or
an individual's genes in GA) fits the
observed data. The goal of both PSO and
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GA algorithms is to minimize this
function. The objective function is based
on a Poisson regression model, an
appropriate choice given that the deaths
variable represents count data (non-
negative integers). Poisson regression
models the occurrence rate of events
(deaths in this case) (Jahandideh-Tehrani
et al., 2020). More precisely, the
objective function is based on the
negative log-likelihood of the Poisson
distribution. Minimizing the negative
log-likelihood  is  equivalent  to
maximizing the likelihood of observing
the actual data, given the model. The
Poisson distribution is defined by:

wxe=W

P(Y =y) ="—"— ©))
Where y is the observed number of deaths
and u Is the expected number of deaths
per unit time (the rate). The log-
likelihood is then:

logL(p) =% (-y/iix—lfc;qg((!;ii)!)> ®

Where y; is the observed number of
deaths for observation i and y; is the
expected number of deaths for
observation i. The negative log-
likelihood is simply the opposite of this
value:
yi X log(u;) —

~logLgn = -3 (%0 ) )
The expected value u is modeled as an
exponential function of the input
variables and their coefficients:

u=exp (intercept + Water_Level_coeff x
Water_Level + Flow_Rate_coeff x

Flow_Rate + interaction_coeff x
Flow_Water_Interaction) (6)

To avoid overfitting, an L1 regularization
term (Lasso) is added to the objective
function. L1 regularization adds the sum
of the absolute values of the coefficients
to the loss function, which encourages
model parsimony by reducing some
coefficients to zero. The regularization
term is defined by:

Regularization = 1,4 X Y(abs(x)) ©)
Where 4, is the regularization strength
and x represents the coefficients.

The combined objective function is

therefore:
Objective = —log L(n) + Regularization (8)

The  Simplified  Particle  Swarm
Optimization (PSO) algorithm is a
population-based optimization algorithm
inspired by the social behavior of flocks
of birds or schools of fish. A swarm of
particles explores the solution space, with
each particle adjusting its position based
on its own best-known position and the
best-known position of the entire swarm
(Khosravi et al., 2019). Initially, the
particle positions (X) and velocities (V)
are randomly initialized. In addition, the
best-known position of each particle
(Pbest) is initialized to its initial position,
and the most prominent position of the
entire swarm (Gbest) is determined.

At each iteration, each particle updates its
velocity based on three factors: its
previous velocity (inertia), a cognitive
component (attraction to its own best
position), and a social component
(attraction to the swarm's best position).
The equation governs the velocity update:

VIi] = inertia_weight x  VIi] +
cognitive_coefficientxrand()x

(Pbest[i] - X[i]) + social coefficient xrand()x
(Gbest - X[i]) 9)

Where inertia_weight controls the
influence of the particle’s previous
velocity,  cognitive_coefficient  the
influence of its own best position,
social_coefficient the influence of the
swarm's best position, and rand()
generates a random number between 0
and 1.

The position of each particle is then
updated by adding its velocity to its
current position:
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X[i] = X[i] + V[i] (10)

The objective function is evaluated for
each particle's new position. If a particle's
new position has a better fitness value
than its previous best position, Pbest is
updated. Similarly, if a particle's new
position has a better fitness value than the
swarm's best position, Gbest is updated.
The PSO algorithm finally returns Gbest
(the best solution found), its fitness value,
and the history of fitness values. The
Genetic  Algorithm (GA) is another
population-based optimization algorithm
inspired by natural selection. A
population of candidate solutions
(individuals) evolves through processes
of selection, crossover (recombination),
and mutation. Initially, a population of
candidate solutions is initialized with
random values (Teng et al., 2017). At
each iteration, individuals are selected for
breeding based on their fitness, using a
tournament selection method. Selected
individuals (parents)

exchange genetic material to create new
offspring  through a  single-point
crossover. If the parents are P1 = [a, b, c,
d] and P2 = [e, f, g, h] and the crossover
point is 2, then the offspring would be O1
=[a, b,g,h]and O2 =[e, f, c, d].
Random modifications are introduced
into the offspring's genomes to maintain
diversity and explore new regions of the
solution space. The mutation is
performed according to the equation:

offspring[i][j] = offspring[i][j] +
random_noise (11)
The objective function is evaluated for
each offspring. The offspring then replace
the worst-performing individuals in the
population, ensuring gradual population
improvement over time. The GA
algorithm returns the best solution found,
its fitness value, and the history of fitness
values (Babatunde et al., 2015). After
PSO optimization, the code uses the

statsmodels library to fit a generalized
linear model (GLM) with a Poisson
family. This provides a more standard
statistical framework for analyzing the
relationship between predictors and the
response variable. The GLM wuses a
Poisson distribution to model the Deaths
variable, which is appropriate for count
data. The log link function relates the
linear predictor to the expected value of
the Poisson distribution. The smf.gim
function is used to fit the GLM. The
formula argument specifies the model
structure, and the data argument provides
the data. Crucially, the start params
argument uses the coefficients obtained
from the SPSO optimization as starting
values for the GLM fitting process. This
can help the GLM converge faster and
more reliably.

The glm_model.summary() method
displays a summary of the GLM results,
including coefficient estimates, standard
errors, p-values, and goodness-of-fit
statistics. The
glm_model.pseudo_rsquared method
computes McFadden's R-squared, a
pseudo-R-squared for GLMs. It indicates
the proportion of the response variable's
variance that the model explains. The
code displays the fitted GLM equation,
showing the estimated coefficients for
each predictor.

Finally, the code includes simulation and
visualization functions. The
simulate_deaths function simulates the
number of deaths for given water_level
and flow_rate values, using the optimized
parameters (PSO's Gbest or GA's
best_solution). The input features
(water_level and flow_rate) must be
scaled using the same StandardScaler
object that was used to scale the training
data. This ensures that the simulation is
performed at the same scale as the model
was trained on. The function calculates
the expected value mu using the GLM
equation and then samples a value from a
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Poisson distribution with mean mu. This
simulates the random variation in the
number of deaths. np.vectorize is used to
efficiently apply the simulate_deaths
function to a grid of water_level and
flow_rate values. The code uses
matplotlib to create 3D surface plots
showing the simulated number of deaths

as a function of water_level and flow_rate.

This allows you to visualize the model's
predictions and how the number of
fatalities varies depending on different
combinations of input characteristics.

This code performs a comprehensive
analysis of the relationships among water
levels, flows, and deaths, using a
combination of optimization algorithms

(PSO and GA), statistical modeling
(Poisson  GLM), and simulation
techniques. The code also includes

visualizations to help understand the
model's behavior and predictions.

3. Results and Discussions

3.1. Comparative  analysis  of
convergence and performance of PSO
and GA algorithms

Figure 2 shows the performance of two
optimization algorithms, PSO and GA,
over iterations. The y-axis represents the
Best Fitness (Negative Log-Likelihood +
Regularization), and the x-axis represents
the number of Iterations.
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Figure 2. Convergence Comparison

In terms of global convergence, both
algorithms, PSO (Synchronous Particle
Swarm Optimization) and GA (Genetic
Algorithm), aim to minimize the best
fitness value (Negative Log-Likelihood +
Regularization). A lower best fitness
indicates better performance. Both
algorithms exhibit a decreasing trend in
the best-fitness value as the number of
iterations increases, indicating
convergence towards an optimal solution.
Regarding the PSO algorithm, we
observe a rapid improvement at the
beginning. The PSO exhibits a rapid
decrease in best fitness during the first
few iterations (approximately iterations O
to 25). This suggests that the PSO quickly

explores the search space and quickly
finds promising solutions. The PSO
convergence value converges to a best
fitness of approximately -97.02. The PSO
convergence speed appears to converge
relatively soon, with most of the
improvements occurring during the first
25 iterations. After that, the change in
best fitness is minimal. In terms of final
performance, the PSO achieves a better
best fitness value (-97.02) than the GA (-
96.51), indicating that it finds a slightly
better solution in this particular run.
Regarding the GA algorithm, we observe
a slower initial improvement. The GA
shows a slower initial decrease in best
fitness compared to the PSO. This
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suggests that the GA can take more
iterations to explore the search space and
find good solutions. The GA’s
convergence value converges to a best
fitness of approximately -96.51. The
GA'’s convergence speed converges more
slowly than the PSO. The improvement in
best fitness is more gradual over the
iterations. In terms of final performance,
the GA’s final best fitness value (-96.51)
is slightly worse than that of the PSO (-
97.02), indicating that it did not find as
optimal a solution as the PSO in this run.
In terms of convergence speed, the PSO
converges faster than the GA, achieving
most of its improvements in the first few
iterations. In terms of final performance,
the PSO achieves a slightly higher best
fitness value than the GA, suggesting a
better final solution. In terms of algorithm
behavior, PSO appears to be more
efficient at quickly finding a good
solution, while GA explores the search
space more gradually.

In this convergence comparison, PSO
appears to be the best-performing
algorithm for this specific problem. It
converges faster and achieves a slightly
higher best fitness value than GA.
However, it is essential to note that these
results are specific to this particular run
and problem. Algorithm performance
may vary depending on the problem's
characteristics and the parameters set by
the algorithms.

3.2.  Statistical modeling  and
simulation of flood-related deaths:
Comparison of algorithms

In this analysis, we examine the
performance of the model used to predict
flood-related deaths in Boma, based on
cross-validation fitness values, as well as
the results of the generalized linear model
(GLM) presented in Table 2.

First, the fitness values are concerning.
The root mean square error (RMSE) is
8.37, meaning that, on average, the
model's predictions deviate from the
actual values by 8.37 units. This high
value indicates significant inaccuracies in
the model, which is particularly
problematic for flood fatality predictions.
Furthermore, the mean absolute error
(MAE) is 6.42, which reinforces the idea
of unsatisfactory model performance, as
it indicates an average prediction error of
6.42 units. Regarding the coefficient of
determination R?, its value is -4.04. A
negative R? is alarming because it
suggests that the model cannot explain
the data's variance better than a simple
mean. This suggests a poor fit of the
model to the data.

Table 2 provides general information
about the fitted model, including the
dependent  variable,  number  of
observations, model family, link function,
log-likelihood, deviance, and pseudo R-
squared.

Table 2. Results of the Stats models Generalized Linear Model (GLM)

Generalized Linear Model Regression Results

Dep. Variable Deaths No. Observations 10
Model GLM Df Residuals 6
Model Family Poisson Df Model 3
Link Function Log Scale 1.000
Method IRLS Log-Likelihood -19.269
Date: Sun, 11 May 2025 Deviance 21.522
Time 21:04:57 Pearson chi2 175
No. Iterations: 6 Pseudo R-squ. (CS): 1.000

The model used is a generalized linear
model (GLM) with a Poisson distribution
and a logarithmic link function. This is
appropriate because the number of deaths

is a discrete, non-negative variable,
which fits well with a Poisson distribution.
The logarithmic link function transforms
a linear combination of predictors into an
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occurrence rate (the expected number of
deaths). To understand the statistical
model's overall performance, several key
elements must be examined. First, the
variable being explained, or predicted, is
the number of deaths. The model was
built using 10 observations. It is
important to note that this relatively small
number of observations can potentially
make the results less reliable and more
sensitive to extreme or atypical values.
Next, we consider the residual degrees of
freedom, which amount to 6. This figure
shows the difference between the total
number of observations and the number
of parameters the model must estimate,
including the intercept and the
coefficients for the various explanatory
variables. Furthermore, the model uses 3
predictors: water depth, river discharge,
and their interaction. The model scale is
1.0000. In the context of a Poisson model,
this value is ideal if the model is correctly
specified. The log-likelihood, which
measures how well the model fits the data,
is -19.269. The higher (i.e., less negative)
this value, the better the model fit. The
deviance, which quantifies the difference

between the current model and a perfect
(so-called saturated) model, is 21.522. A
lower deviance indicates that the model is
closer to an ideal fit to the data. Pearson's
chi-square, another measure of fit, is 17.5.
Cameron and Windmeijer's pseudo R-
squared, which attempts to quantify the
proportion of variance explained by the
model, is 1.000. Although this may seem
excellent, such a high value should be
interpreted with caution, as it may
indicate overfitting, particularly given the
small number of observations. The
estimation algorithm  required  six
iterations to converge on a solution.
Finally, the covariance type used is non-
robust, meaning that the standard errors
of the estimated coefficients are not
protected against potential violations of
model assumptions, such as
heteroscedasticity.

Table 3 presents the estimated
coefficients for each variable in the model,
along with their standard errors, z-
statistics,  p-values  (P>|z]), and
confidence intervals.

Table 3. Regression Coefficients of the Generalized Linear Model (GLM)

Covariance Type nonrobust
coef std err z P>z [0.025 0.975]
Intercept -0.422 0.464 -0.910 0.363 -1.330  0.487
Water_Level 0.695 0.359 1.938 0.053 -0.008  1.398
Discharge -1.273 0.646 -1.972 0.049 -2.538  -0.008
Flow_Water 1,505 0.446 3575 0.000 0.721 2470

_Interaction

To fully understand how the water level
and discharge of the Kalamu River
influence the number of deaths during
floods, it is essential to consider the
coefficients of the variables in the
statistical model. Because the model is
logarithmic, these coefficients do not
translate directly into linear changes in
the number of deaths but rather into
multiplicative changes in the death rate.
First, the model's intercept is -0.4218.

Taking the exponential of this value
(exp(-0.4218) =~ 0.656), we obtain an
estimate of the expected death rate when
all other variables are zero. However, this
value must be interpreted with caution, as
it may not be realistic or meaningful to
assume that the water level and discharge
are simultaneously zero. Second, the
coefficient for water level is 0.6952. This
means that for every unit increase in
water depth, the death rate is
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approximately doubled (exp(0.6952) =~
2.004). Thus, an increase in water depth
is associated with a significant increase in
the number of deaths. It should be noted
that the p-value for this coefficient is
0.053, indicating marginal significance at
the 0.05 level. The coefficient for river
discharge is -1.2731. Taking the
exponential of this value (exp(-1.2731) =
0.280), we find that for every unit
increase in discharge, the death rate is
multiplied by approximately 0.280. This
suggests that increased discharge is
associated with a significant decrease in
mortality. The p-value of 0.049 for this
coefficient is significant at the 0.05 level.
Finally, the interaction term between
discharge and water depth is substantial.
Its coefficient is 1.5954, which means
that the effect of water depth on the
number of deaths depends on discharge,
and vice versa. More precisely, for each
unit increase in the interaction, the death
rate is multiplied by approximately 4.929
(exp(1.5954) = 4.929). The p-value of
0.000 associated with this interaction
term is highly significant, confirming its
importance in the model.

These coefficients suggest that water
depth, when considered alone, tends to
increase the number of deaths during
floods. Conversely, river discharge, when
considered alone, tends to decrease the
number of deaths. However, the
interaction between these two variables is
crucial, as it indicates that the effect of
one on the number of deaths depends on
the value of the other. For example, high
discharges could mitigate the negative
impact of high water levels by allowing
water to drain more quickly, thereby
reducing flood risks. Conversely, high
water levels combined with low
discharges could exacerbate risks and
lead to more deaths.

The equation for the Generalized Linear
Model (GLM) simulated using the SPSO

and GA algorithms to predict the number
of deaths is as follows:

Deaths =
—0.42 4+ 0.7 X Wata eper — 1.27 X
exp( Flowggte + 11.60 X ) (12)
Flow_Water_Interaction

Where Water Level represents the water
level, Discharge represents the discharge,
and Flow Water Interaction represents the
interaction between water level and
discharge. The McFadden R-squared for
this model is 0.999, indicating an
excellent fit to the data.

The model equation, Deaths = exp(-0.42
+ 0.70 x Water Level + -1.27 x
Flow_Rate + 1.60 X
Flow_Water_Interaction), provides a
mathematical representation of the
relationship between the variables. This
equation expresses the expected number
of deaths as a function of water level
(Water_Level), river discharge
(Flow_Rate), and their interaction
(Flow_Water_Interaction). Specifically,
the equation indicates that the number of
deaths equals the exponential of a linear
combination of the explanatory variables.
The term -0.42 represents the intercept,
which is a constant. The term 0.7 x
Water_Level suggests that an increase in
water level is associated with an increase
in deaths (since the coefficient is positive).
The term -1.27 x Flow_Rate indicates
that an increase in discharge is related to
a decrease in the number of deaths (since
the coefficient is negative). Finally, the
term 1.60 x Flow_Water_Interaction
captures the combined effect of water
level and discharge, and its positive
coefficient indicates that their interaction
increases the number of deaths. It is
important to note that, due to the
exponential function, the effects of the
variables are not linear. This means that
the impact of an increase in water level or
discharge on the number of deaths
depends on the current value of these
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variables. Furthermore, the interaction
between water level and discharge further
complicates interpretation, as it indicates
that the effect of water level on the
number of deaths depends on discharge,
and vice versa. To understand how the
water level and discharge of the Kalamu
River influence the number of deaths
during floods, it is essential to analyze the
model equation and the McFadden R-
squared value. Let's start with
McFadden's R-squared, which is 0.999,
but this high value could be misleading
and indicate overfitting given the small
number of observations. This value,
extremely close to 1, suggests that the
model explains almost all the variance in
the number of deaths. In other words, the
model appears to capture virtually all the
information in the data regarding the
relationships  among  water  level,
discharge, and the number of deaths.
However, it is crucial to interpret this
value with great caution, as such
proximity to 1 may signal overfitting of
the model to the training data. This means
the model could be overly specific to the
data used for its estimation and perform
poorly when applied to new data.

The model equation and McFadden's R-
squared value suggest that water level,
discharge, and their interaction are
important factors influencing the number
of deaths during floods. However, it is
crucial to consider the risk of overfitting
and interpret the results with caution,
particularly given the nonlinear and
interactive nature of the relationships
between variables.

Table 4 presents the exponential
coefficients for the Boma flood-related
death prediction model.

Table 4. Exponential Coefficients and
Interpretations of Model Parameters

Parameter Rate ratio  p-value
Intercept 0.6559 0.363
Water_Level 2.004 0.0526
Discharge 0.280 0.0486

Flow Water Interaction 4.930 0.0004

Let's start with the intercept, which has a
rate ratio of 0.6559. This coefficient
represents the log of the death rate when
all explanatory variables are zero. A rate
ratio less than 1 indicates that, in the
absence of other variables, the model
predicts fewer deaths than the reference
average. This suggests that, in this
hypothetical scenario, the death rate is
relatively low. However, the associated
p-value of 0.3629 is high and exceeds
0.05. This means that the intercept is not
statistically significant, preventing us
from concluding that it has a tangible
impact on the number of deaths. It is
therefore prudent not to give this value
undue weight in the overall interpretation
of the model. Regarding water level, the
rate ratio is 2.0040. This means that a
one-unit increase in water level is
associated with an approximately 100.4%
increase in the death rate. This
observation suggests that water levels
have a positive, potentially significant
effect on the risk of death from flooding.
The p-value of 0.0526, while close to
significance, does not conclusively reach
this threshold. This indicates a trend
toward water levels affecting deaths, but
the evidence is not strong enough to
definitively establish this impact in the
context of this study. Next, discharge
displays a rate ratio of 0.2800. This
indicates that a one-unit increase in
discharge is associated with an
approximately 72% decrease in the death
rate. This relationship suggests that
higher flow rates could have a protective
effect, potentially by promoting better
water circulation and reducing the risk of
stagnant water accumulation. The p-value
of 0.0486, less than 0.05, indicates that
this coefficient is statistically significant.
Thus, we have sufficient evidence to
conclude that flow rate has a tangible
impact on the number of deaths, and an
increase in flow rate is associated with a
significant reduction in the risk of death.
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Finally, the interaction between water
level and flow rate has a rate ratio of
4.9301. This high figure indicates that a
one-unit increase in this interaction is
associated with an approximately 393%
increase in the death rate. This
underscores  the  importance  of
considering the combined effect of these
two variables, suggesting that their
interaction plays a crucial role in the risk
of death. The corresponding p-value is
0.0004, indicating that the interaction
effect is highly significant. This shows a
high probability that this interaction has a
tangible impact on the number of deaths,
thereby justifying its inclusion in the
model.

The analysis of the exponential
coefficients and p-values provides
valuable insights into the factors

influencing flood-related deaths in Boma.
Water level and discharge, as well as their
interaction, appear to be key determinants
of the risk of death. The statistical
significance of the discharge and

interaction coefficients underscores the
importance of careful flood management,
as these factors can have significant
implications for public safety.

These results highlight the importance of
integrated water resource management,
which considers not only water level but
also discharge, to minimize risks and
ensure the safety of wvulnerable
communities.

Information criteria, such as Akaike
Information Criterion (AIC) of 37.06 and
Bayesian Information Criterion (BIC) of
3.73, show that lower values would be
preferable for assessing model quality.
Multicollinearity analysis indicates that
Water_Level has a variance inflation
factor (VIF) of 1.37 (acceptable). In
contrast, Flow_Rate and
Flow_Water_Interaction have VIFs of
3.70 and 3.25, respectively, indicating
moderate multicollinearity that may
affect the stability of the estimates.
Figure 3 illustrates the display of residual
plots, fitted plots, and model errors.
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Figure 3. Residuals and Fitted Values

Figure 3 shows the relationship between
residuals and predicted values. Most
residuals being close to zero indicates that
the model predicts relatively well for the

majority of observations. However, an
anomalous  point  that  deviates
significantly could signal an influential
observation or a potential data problem.
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Figure 4 illustrates the interaction effect

via contour lines with confidence bands,

relating it to hydrological processes (flow
and water level).

Sensitivity Analysis of Interaction Effect
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Figure 4. Sensitivity Analysis of the Interaction Effect

Figure 4 shows how the interaction
coefficient between water level and
discharge varies with the interaction
factor. A decreasing trend is observed,
suggesting that the combined effect of
these variables on the number of deaths
decreases as the interaction is stronger.
This could indicate that at higher levels of
interaction, the effects of each variable on

deaths are attenuated, which is essential
for risk management.

Table 5 presents the values of water level
(Water_Level Scaled), discharge
(Flow_Rate_Scaled), and number of
deaths (Deaths) for each observation. The
Water_Level Scaled and
Flow_Rate_Scaled columns indicate that
the water level and discharge values have
been scaled or normalized.

Table 5. Scaled Value Set

N° Water Level Scaled Flow Rate Scaled Deaths
0 -1.489 -0.530 3
1 1.221 1.133 0
2 -0.699 0.030 0
3 -0.837 -0.063 0
4 0.947 -0.111 4
5 1.599 2.323 40
6 -0.082 -1.057 0
7 0.707 -1.354 2
8 -0.357 -0.182 2
9 -1.009 -0.190 0

First, let's examine the scaled data
presented in Table 5. We observe a
relationship  between  water level,
discharge, and the number of deaths. For
example, when the water level and
discharge are high (row 5), the number of
deaths is also high (40). Conversely,
when the water level and discharge are

low (rows 2, 3, 6, and 9), the number of
deaths is generally low (0). However,
there are exceptions, such as row 1, where
the water level and discharge are high but
the number of deaths is low (0). This
suggests that urbanization factors could
also influence the number of deaths
during floods.
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Table 6 presents a statistical comparison
of the ability of the PSO (Simplified
Particle Swarm Optimization) and GA
(Genetic  Algorithm) algorithms  to

reproduce real-world data on water levels,
discharge, and deaths. T-test results,
including t-statistics and p-values, are
presented for each variable and algorithm.

Table 6. Statistical comparison of the ability of PSO and GA algorithms to reproduce real water level,
discharge, and number of deaths data (T tests)

Variable Real data and PSO algorithm Real data and the GA algorithm
T-test: t-statistic p-value T-test: t-statistic p-value

Water Level 0.027 0.979 -0.771 0.451

Scaled

Discharge 0.477 0.639 -0.865 0.399

Scaled

Deaths 0.051 0.960 0.202 0.842

The statistical results of the T-tests show
that there is no statistically significant
difference between the actual data and the
results simulated by the PSO and GA
algorithms. This suggests that these
algorithms can realistically model the
relationships  among  water  level,
discharge, and the number of deaths
during floods. However, it is essential to
note that these statistical results do not
prove that the algorithms are perfect, but
rather that they can capture the main
trends observed in the actual data.

When analyzing bootstrap confidence
intervals for model coefficients, it is
essential to note the observed variability.
These confidence intervals provide an
estimate of the uncertainty associated
with each coefficient, which is crucial for
interpreting the model's results. To begin
with, the confidence interval for the
intercept ranges from -40.7786 to
16.7376. This wide range indicates
significant uncertainty in the intercept
value, suggesting that, under certain
conditions, the model's impact can vary
considerably. For the coefficient
associated with  water level, the
confidence interval is -9.9187 to 61.3772.
Again, this range suggests significant
variability in the effect of water level on
the number of deaths. The presence of
negative values indicates that, in some

situations, an increase in water level may
not necessarily lead to a rise in deaths,
raising questions about the proper
relationship between these variables. For
discharge, the confidence interval ranges
from -75.5325 to 48.8561. This result
also  highlights  the  uncertainty
surrounding the effect of discharge on
deaths. As with water levels, the presence
of negative values in this interval means
that increases in discharge may be
associated with decreases in fatalities in
some cases, but with increases in others.
Finally, for the interaction term between
water level and discharge, the confidence
interval is -38.7170 to 59.0501. This
equally wide interval reveals
considerable uncertainty about how the
interaction between these two variables
influences the number of deaths. This
suggests that the combined effect of these
factors is complex and can vary
considerably depending on the conditions.
Overall, these wide confidence intervals
indicate significant uncertainty in the
coefficient estimates. This highlights the
need for caution when interpreting model
results, as such variability raises
questions about the robustness of
conclusions drawn from the current data.

Figure 5 visualizes the simulated deaths
as a function of water level and flow rate
from the PSO and GA algorithms above.
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SPS0: Simulated Deaths vs. Water Level and Flow Rate
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GA: Simulated Deaths vs. Water Level and Flow Rate 30
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Figure 5. 3D surface of simulated deaths as a function of water level and flow rate from the PSO and GA
algorithms

Based on Figure 5, which plots simulated
deaths as a function of the Kalamu River's
water level and discharge, several key
insights can be derived about the impact
of flooding. First, the figure highlights a
direct relationship between water level,
discharge, and the number of deaths. In
other words, the higher the water level
and discharge, the more simulated deaths
occur. This observation supports the idea
that flood intensity, as measured by these
two parameters, is a determining factor in
the impact on populations. Second, the
figure allows us to visualize the critical
thresholds where the risk of death
increases significantly. By observing
areas where the graph's surface rises
sharply, we can identify the water levels
and discharges at which the number of
simulated deaths increases significantly.
These thresholds can serve as reference
points for flood risk planning and
management, allowing alert and
evacuation measures to be triggered when
these levels are reached or exceeded.
Furthermore, the figure compares the
results from two different simulation
algorithms, PSO and GA. By comparing
the two graphs, the robustness of the
results can be assessed, and the areas

where the two algorithms converge or
diverge can be identified. This
comparison helps increase confidence in
the conclusions drawn from the figure
and better understand the uncertainties
associated with the simulations. Finally,
the figure can serve as a communication
tool to raise public and decision-maker
awareness about the impact of flooding.
By presenting a clear, intuitive
visualization of the relationships among
water level, discharge, and the number of
deaths, the figure can help mobilize
resources and implement more effective
flood risk prevention and management
measures. This figure is a valuable tool
for understanding the impact of flooding
on the Kalamu River. It highlights the
relationships among  water level,
discharge, and the number of deaths;
identifies  critical  thresholds; and
compares simulation results from
different algorithms. By serving as a
communication tool, it facilitates public

awareness and informed decision-making.

The ability of PSO and GA algorithms to
realistically model the relationships
among these parameters enhances their
usefulness for planning and risk
management.
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Outre la comparaison des performances
des algorithmes PSO et GA dans la
modélisation prédictive des déces liés aux
inondations a Boma, le résultat
mentionné  ci-dessus  répond  aux
exigences d'évaluation rapportées par les
chercheurs suivants.

Figure 2 compares the performance of the
Simplified Particle Swarm Optimization
(PSO) and Genetic Algorithm (GA)
algorithms  over iterations.  Both
algorithms aim to minimize the fitness
value, with lower values indicating better
performance. PSSO  shows  rapid
improvement from the beginning,
reaching a convergence of approximately
-97.02, which is higher than GA's -96.51.
GA, on the other hand, progresses more
slowly and requires more iterations to
explore the search space. These results
show that PSO is more effective at
quickly finding reasonable solutions. For
example, Chapi et al. (2017)
demonstrated that a hybrid artificial
intelligence approach can improve flood
risk assessment, as evidenced by the
effectiveness of PSO for similar
modeling problems. Furthermore, Deng
et al. (2022) used hybrid approaches
combining optimization algorithms for
water level forecasting, highlighting the
importance of convergence speed in
complex settings. However, some studies,
such as Di Baldassarre et al. (2013), warn
of the risk of overfitting when algorithms
achieve excellent performance on small
training datasets. This concern may also
apply to the results observed here.

Interpreting the results of the model used
to predict flood-related deaths in Boma
reveals several significant concerns. First,
the fitness values are alarming. The root
mean square error (RMSE) is 8.37,
meaning that, on average, the model's
predictions deviate from the actual values
by about 8.37 units. This high figure
indicates that the model has significant

inaccuracies, making flood-related death
predictions  particularly  problematic.
Furthermore, the mean absolute error
(MAE) is 6.42, reinforcing the
impression of unsatisfactory performance,
as this indicates that prediction errors are,
on average, 6.42 units. Regarding the
coefficient of determination R?, its value
is -4.04. A negative R? is particularly
concerning because it indicates that the
model fails to explain the data's variance
better than a simple mean. This suggests
a poor fit of the model to the data, calling
for a reevaluation of the variables and
modeling methods used. The results of
the generalized linear model (GLM)
confirm these concerns. The model,
which uses a Poisson distribution, has
only 10 observations, which is relatively
low for robust analysis. The log-
likelihood is -19.269, and the deviance is
21.522. A lower deviance value would
have been desirable, as it would indicate
a better fit. Also note that the pseudo-R?
is 1.000, but this value can be misleading
and may indicate overfitting, especially
with so few observations. Examining the
variable coefficients reveals that the
intercept is -0.4218, which is not
significant. For water level, the
coefficient is 0.6952 (p = 0.053),
indicating that higher water levels are
associated with more deaths. On the other
hand, discharge has a coefficient of -
1.2731 (p = 0.049), suggesting that an
increase in discharge is related to a
decrease in deaths. The interaction term,
on the other hand, has a coefficient of
1.5954 (highly significant, p < 0.001),
highlighting that the combined effect of
water level and discharge on deaths is
strong. Exponential coefficient analysis
reveals that the intercept (0.6559) is not
significant (p = 0.3629). Water level
(ratio of 2.0040; p = 0.0526) may increase
the death rate. On the other hand, flow
rate (0.2800, p = 0.0486) reduces the risk
of death. The interaction between the two
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(4.9301, p =0.0004) is highly significant,
highlighting the importance of integrated
water resource management. Information
criteria, such as the AIC (37.06) and BIC
(3.73), indicate that lower values are
preferable for assessing model quality.
Analyzing multicollinearity, variance
inflation factors (VIFs) suggest that water
level has a VIF of 1.37 (acceptable). In
contrast, discharge and the interaction
term have VIFs of 3.70 and 3.25,
respectively,  suggesting  moderate
multicollinearity that may affect the
stability of the estimates. T-tests show
that there is no significant difference
between the actual data and the results
simulated by the PSO and GA algorithms,
suggesting that these algorithms can
realistically model the relationships
between water level, discharge, and
deaths. Bootstrap confidence intervals for
the  coefficients show significant
variability. For example, the interval for
the intercept is [-40.7786, 16.7376],
while the interval for the water level is [-
9.9187, 61.3772]. These wide intervals
indicate significant uncertainty in the
coefficient estimates, highlighting the
need to interpret the results with caution.
Several studies corroborate these results.
Babatunde et al. (2015) demonstrated the
importance of comparing algorithms to
identify the best applications, which is
relevant to PSO and GA applications.
Chapi et al. (2017) highlight how hybrid
approaches can  improve  flood-
susceptibility assessment, while Deng et
al. (2022) highlight the use of hybrid
methods for water-level forecasting. Di
Baldassarre et al. (2013) discuss human
and aquatic systems relevant to flooding.
Furthermore, Khosravi et al. (2019) and
Hoang and Liou (2024) demonstrate the
effectiveness of flood forecasting models,
reinforcing the need for advanced
methods to achieve accurate forecasts.
The contribution of this study lies in
identifying gaps in current predictive

models for flood-related deaths and in
proposing solutions to improve them. By
integrating advanced approaches and
rigorously  evaluating the factors
influencing forecasts, this research paves
the way for significant improvements in
flood risk management and the protection
of vulnerable populations.

To improve the model's performance,
several recommendations can be made. It
would be appropriate to increase the
number of observations to improve
robustness. Furthermore, exploring new
variables or using advanced modeling
techniques, such as hybrid models
combining  machine learning and
traditional methods, could improve the
results. Finally, further validation of the
models with real-world data could
strengthen the reliability of flood-related
death predictions.

4. Conclusions

The study presents an in-depth analysis of
flood dynamics in Boma, Democratic
Republic of Congo, by integrating
optimization algorithms, including PSO
(Simplified Particle Swarm Optimization)
and Genetic Algorithms (GA), to model
flood-related deaths. The results support
the hypothesis that a combination of
advanced methods can improve the
accuracy of flood-mortality predictions
by accounting for the complex
interactions between water levels and
river discharge. The research objectives
were achieved through a rigorous
methodology that included accurate data
collection, data preprocessing, and the
application of appropriate statistical
models. The results showed that an
increase in water level is directly
associated with a significant increase in
deaths, whereas an increase in discharge
tends to reduce this risk. However, the
interaction between these two variables is
crucial, suggesting that high water levels
with low discharge can exacerbate flood
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risks. Building on previous studies, this
research is part of a broader approach to
flood risk modeling and corroborates the
findings of similar work across various
geographical contexts. Studies on urban
flooding have revealed comparable
dynamics, in which interactions among
hydrological variables play a determining
role in risk predictions. The results of this
study also highlight the importance of
selecting optimization algorithms tailored
to the problem's specific characteristics.
PSO proved to be more effective than GA
for this application, achieving faster
convergence  and  better  overall
performance. However, it is essential to
remain vigilant regarding the risks of
overfitting, especially with a limited
number of observations. This research
offers valuable insights into flood risk
management in Boma and, potentially, in
other similar regions. The conclusions
drawn can guide decision-makers in
developing risk mitigation strategies,
thereby promoting better preparedness
for extreme events. The integration of
statistical results and 3D visualizations
enables effective communication of
flood-related issues, thereby increasing
awareness and community engagement in
natural disaster prevention.
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