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This study introduces a framework for assessing climate change and flow
conditions by integrating the latest climate simulations from the CMIP6 project
(HadGEM3-GC31-LL model) with the Soil and Water Assessment Tool (SWAT)
and evaluating the influence of different climate model resolutions. A total of 66
hydrological and environmental flow indicators from the Indicators of Hydrologic
Alteration (IHA) were calculated to assess future extreme flows in the Sarbaz
River Basin, located in Sistan Province, which is particularly vulnerable to
flooding. Results indicate that by the 2030—-2050 period, compared to the baseline
period of 1990-2019, annual precipitation, streamflow, and maximum and
minimum temperatures are projected to increase by 6.9%, 9.9%, 0.8°C, and 0.9°C,
respectively. Monthly precipitation and streamflow are expected to rise,
especially during the monsoon season (June—September) and early wet periods
(December). The magnitude of minimum 1-, 3-, 7-, 30-, and 90-day flows is
projected to increase by 7.2% to 8.2%, while peak flows could rise by 10.4% to
28.4%. Finally, significant differences were observed between high- and low-
resolution climate models, with high-resolution models predicting an 11.8%
increase in average monthly flows during November—January, compared to just
3.2% in low-resolution models.

1. Introduction

The increasing frequency and severity of

agricultural productivity and freshwater

extreme climate events, such as droughts and
floods, are largely linked to climate change,
causing serious social and economic impacts
(Giorgi et al., 2018; Raikes et al., 2019).
Scientific studies show that global warming,
mainly caused by human-emitted greenhouse
gases, poses a significant threat to the
environment, ecosystems, and human
societies. In recent decades, Asia has faced
increased rainfall and higher temperatures
due to global warming (Tan et al., 2021; Tong
et al,, 2019). These changes significantly
affect hydrological systems, increasing
water-related risks such as floods and
droughts (Frangois et al., 2019; Kundzewicz
et al., 2014). Severe droughts can reduce

resources, leading to social and economic
losses (Balti et al., 2020). To assess trends in
hydro-climatic extremes in a specific region,
long-term observational data are essential, as
they provide the most reliable source for
understanding the hydro-climatic system (Fu
et al., 2010). Long-term observational data
are crucial for analyzing hydro-climatic
extremes, with hydrological models —
whether distributed (e.g., SWAT) or semi-
distributed (e.g., AWBM, IHACRES) —
essential tools for wunderstanding these
processes and  evaluating  mitigation
strategies. These models are versatile, cost-
effective, and applicable across various
scales. Additionally, outputs from Global
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Climate Models (GCMs) are valuable for
simulating climate-hydrology interactions
(Ghorbani Fard, 2022; Shepherd et al., 1999;
Singh and Woolhiser, 2002; Borah and Bera,
2004; Daniel, 2011; Fu et al., 2019; Betts et
al., 2018). Vanniere et al. used the high-
resolution HadGEM3A-GA3.0 model (~60
km) within CMIP5 to study the impacts of
RCP8.5 on global freshwater flows, finding
significant regional variations, with river
flows in South and East Asia increasing up to
twice the historic average (Vanniére et al.,
2019). The newer CMIP6 models, part of
Phase 6 of the CMIP, feature advanced
capabilities but still have coarse resolutions
(100-200 km) (Eyring et al., 2016; Kim et al.,
2020; Haarsma et al., 2016). Studies on
Southeast Asia indicate spatially varied
changes in river streamflow, with projections
under the CORDEX-SEA framework
suggesting drier conditions in southern
regions and wetter conditions in the north by
the end of the 21st century (Raghavan, 2013;
Okwala et al., 2020; Supari et al., 2020). A
study on Southeast Asia's hydroclimatic
conditions (SEA-HOT) combined Regional
Climate Models (RCMs) from the CORDEX-
SEA  framework with the SWAT
hydrological model to evaluate
meteorological droughts under current and
future climates. While RCMs provide high-
resolution climate data, they face limitations,
such as the lack of two-way interactions with
large-scale atmospheric patterns (Bowden et
al., 2012; Harris et al., 2010). The SWAT
model is widely used for hydrological
simulations and watershed runoff analysis,
supporting water resource management and
environmental research (Arnold et al., 1998;
Arnold et al., 2012a; Williams et al., 2008;
Bieger et al., 2017). Today, SWAT is one of
the most widely used hydrological models
globally, applied to various water resource
issues across different watershed sizes and
environments (CARD, 2019). Its
performance has been evaluated in four main
ways: general assessments of flow and
sediment, land management and erosion
studies, region-specific analyses, and

applications of water management strategies.
Overall  reviews  highlight SWAT's
applications, performance, and future
research directions (Gassman et al., 2007).
Numerous thematic studies demonstrate
SWAT’s effectiveness in  simulating
streamflow and assessing climate change
impacts (Krysanova and White, 2015;
Gassman et al., 2014; Douglas-Mankin et al.,
2010; Gassman and Wang, 2015; Tuppad et
al., 2011). As SWAT's global use expands,
synthesizing its findings helps developers
and new users identify practical applications,
model strengths, and key challenges in
specific regions. Regional reviews have been
conducted for the Upper Nile River Basin
(van Griensven et al., 2012), Brazil
(Bressiani et al., 2015), Southeast Asia (Tan
et al., 2019a), and the Talar watershed, where
the model was evaluated using both global
and regional soil maps. Calibration with the
SUFI-2  algorithm indicated that the
SOL AWC parameter was highly sensitive,
and the regional soil map yielded more
accurate results in certain sub-basins
(Mohseni et al.,, 2023). Additionally,
emerging applications include
ecohydrological modeling (Krysanova and
Arnold,  2008), ecosystem  services
(Francesconi et al., 2016), pesticide fate and
transport (Wang et al., 2019), and daily-scale
studies (Brighenti et al., 2019). Therefore,
this study aims to introduce a novel
framework for assessing the impacts of
climate change on river flow in tropical
regions by integrating the SWAT model
indices, CMIP6 data, and IHA indicators.
The main objectives of this research are: (1)
to evaluate the capability of CMIP6 models
at the basin scale; (2) to assess the
performance of the SWAT model in long-
term streamflow simulation; (3) to quantify
hydrological variables for the periods 1990—
2019 and 2030-2050 under various CMIP6
GCM scenarios with both high and low
spatial resolutions.The results provide a
deeper understanding of how CMIP6 spatial
resolution affects the accuracy of streamflow
simulations. Moreover, this study presents a
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comprehensive and up-to-date framework for
evaluating future climatic conditions in
Sistan and Baluchestan province and other
tropical regions in developing and less
developed countries, which can serve as a
basis for climate adaptation strategies and
environmental protection policies.

2. Materials and Methods

2.1. Study Area

The Sarbaz watershed is the upstream basin
of the Pishin Dam. It is one of the sub-basins
of the rivers in Balochistan, located within
the province and bounded by the coordinates
60°56' to 61°35" E and 26°5' to 27°0" N. To
the east, it borders Pakistan; to the south, it is
adjacent to Bahu Kalat and Dashtiari; to the
west, it is limited by the Kajo watershed; and
to the north, it is bounded by the Makran
mountain range. This watershed, upstream of
the Pishin hydrometric station, has an

61°00"E 61°10°0°E

average elevation of 932 meters above sea
level. The basin covers 6,324 square
kilometers and has an average slope of
16.8%.

The Sarbaz River is the only permanent river
in Balochistan. The basin's northern regions
predominantly influence the flow of the
Sarbaz River. The river's base flow is very
low, while its flood flow is significant even
at low return periods. The river features both
a large and a small riverbed. The river’s flow
regime corresponds to the precipitation
pattern in summer and winter. The peak
summer flows are primarily influenced by
monsoon rainfall, whereas the peak winter
flows are caused by precipitation from cold
fronts originating from Siberia and the
Mediterranean. Figure 1 illustrates the
geographical location of the Sarbaz
watershed.
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Figure 1. Study area

2.2. SWAT Model

The Soil and Water Assessment Tool (SWAT)
i1s a semi-distributed, continuous-time
hydrological model developed to assist water
resource managers in evaluating the impacts of
various land management practices on river

discharge and non-point source pollution
(Arnold et al., 1998). Over the past few
decades, SWAT has undergone numerous
developments and enhancements (Gassman et
al., 2007; Arnold et al., 2012). The model
typically operates at a daily or monthly time
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step and is designed for long-term continuous
simulation. SWAT can be used for simulating
long-term hydrology and climate patterns.
While it performs well for average streamflow
analysis, it requires high-resolution temporal
input—at least daily—to adequately simulate
extreme flood events. For robust climate
studies that include both severe droughts and
floods, long-term climatic data covering at least
30 years at daily resolution is recommended as
input for SWAT simulations (Tan et al., 2020).
Model calibration is essential for ensuring the
reliability of SWAT outputs, and this is
commonly achieved through the SWAT-CUP
tool, which incorporates various optimization
algorithms (Abbaspour et al., 2007; 2018).
Among these, the SUFI-2 (Sequential
Uncertainty Fitting Version 2) algorithm is
widely used for calibrating SWAT at both daily
and monthly time scales. Model performance is
typically evaluated using statistical indices
such as the coefficient of determination (R?)
and the Nash—Sutcliffe Efficiency (NSE) (Nash
et al., 1970). The values of R? range from 0 to
1, while NSE ranges from -1o to 1, with 1
indicating perfect model performance (Zhang
et al., 2020).

2.3 CMIP6 Climate Models

Climate projections are recognized as a
significant source of uncertainty in
hydrological and hydroclimatic modeling
studies focused on future conditions (Tan et al.,
2014; Kundzewicz et al., 2018). These
uncertainties arise from multiple factors,
including future socio-economic development
scenarios, greenhouse gas emissions, aerosol
emissions, the sensitivity of General
Circulation Models (GCMs) and regional
climate models (RCMs), downscaling
techniques, and bias correction methods.
Minimizing these uncertainties is regarded as a
critical future research priority (Kundzewicz et
al., 2018). The CMIP3, CMIPS5, and CMIP6

climate  modeling  frameworks  have
progressively enhanced our understanding of
the Earth’s future climate system (IPCC, 2013).
In particular, CMIP6 GCMs have been widely
used in conjunction with SWAT to evaluate the
long-term impacts of climate change on river
flows. The sixth phase of CMIP (Coupled
Model Intercomparison Project), coordinated
by LLNL (2019), serves as a key input to the
IPCC Sixth Assessment Report (AR6). The
latest high-resolution GCM outputs (<50 km)
from the HighResMIP experiment significantly
improve spatial resolution compared to the
coarse outputs from CMIP5 models (Forsythe
et al., 2019). These high-resolution simulations
are comparable to those used in RCM-based
studies (Musie et al., 2020; Tessema et al.,
2020) and are expected to be increasingly
applied in future SWAT-based studies. Given
that climate change impact analysis is one of
the primary applications of the SWAT model
(Tan et al., 2019a; Gassman et al., 2014;
CARD, 2019), this study adopts a selection of
CMIP6 models based on their statistical
performance during the historical (1990-2014)
and future (2030-2050) periods. The climate
data are sourced from the Earth System Grid
Federation (ESGF) data platform. The SSP5-
8.5 scenario drives simulations for the future
period—a high-emission pathway within the
new Shared Socioeconomic Pathways (SSPs)
framework adopted by the IPCC for ARG. It is
acknowledged that using only one climate

scenario (SSP5-8.5) limits the
comprehensiveness of the climate change
impact assessment. Future studies will

incorporate additional scenarios such as SSP2-
4.5 to provide a more balanced evaluation of
different emission pathways and their
implications for water resources. Details of the
selected GCMs, including model developers
and horizontal resolution, are presented in
Table 1.
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Table 1. Summary of GCMs used in the CMIP6 experiments

Resolution (Longitude

Vertical Resolution

Abbreviation <Latitude) (Layers) Model Name Modeling Organizations
HadGEM3-LM 1.8750 x 1.25¢ HadGEM3- The UK Met Office
HadGEM3-MM 0.83° x 0.56° 85 GC31 Hadley Centre for Climate
HadGEM3-HM 0.352 x 0.230 Change

CNRM 1.406° x 1.406° French National Centre for
CNRM-HR 0.5° x 0.5¢ o1 CNRM-CM6-1 Meteorological Research
27 institutes in Europe
EC-Earth 0.703° x 0.703 91 EC-Earth3P (Haarsma et al., 2020)
MRI-H 0.563° x 0.563¢ Meteorological Research
MRI-S 0.188¢ x 0.188¢ 60 MRI-AGCM3-2 Institute (Japan)
Institute of Atmospheric
FGOALS-L 1.250x 1o 32 FGOALS-f3 Physics/Chinese Academy
of Sciences
GFDL- Geophysical Fluid
GFDL 0.625° x 0.5 33 CM4C192 Dynamics Laboratory/
NOAA (U.S)

The selection of climate models, particularly
the HadGEM3-GC31-LL model and other
HighResMIP models, was based on a
combination of scientific performance criteria
and practical considerations. The following key
factors were used to guide the model selection
process:

1-Spatial Resolution: HighResMIP models
offer significantly higher spatial resolution than
standard CMIP6 models, enabling a more
accurate representation of regional climate
features, especially in areas with complex
topography or localized precipitation patterns.
2-Model Performance in Historical
Simulations: Models were evaluated based on
their ability to reproduce observed historical
climate conditions, particularly temperature
and precipitation trends over the study period.
Models that showed better agreement with
observational datasets (e.g., CRU, GPCC, and
ERAS) were prioritized.

3-Availability of Required Variables: Only
models that provide the necessary climatic
variables (e.g., daily precipitation, maximum

and minimum temperatures, solar radiation) for
both historical and future projection periods
were considered.

4-Previous Use in Regional Studies: Preference
was given to models that have been
successfully applied in similar climatic regions,
particularly in tropical and subtropical
catchments in Southeast Asia and South Asia,
where rainfall-runoff processes are susceptible
to changes in precipitation patterns.

5-Data Accessibility: The availability of bias-
corrected and downscaled model outputs
through reliable platforms, such as the Earth
System Grid Federation (ESGF), was also
considered to ensure consistency and
reproducibility.

Based on these criteria, the HadGEM3-GC31-
LL model from the HighResMIP ensemble was
selected as the primary model for detailed
analysis due to its superior performance in
capturing seasonal rainfall variability and its
high-resolution representation of hydrological
processes.
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Table 2. Results of climate model evaluation

Historical Performance

Extremes Data Regional

Model Name Spatial Resolution ég:gé?ﬁzinwtgﬁ) Representation Availability  Applicability
HadGEM3-GC31 High (0.5° x 0.5°) Good (r=0.82) Very Good Complete High
CNRM-CM6-1 Medium (1.4° x 1.4°) Moderate (r = 0.65) Moderate Complete Moderate
EC-Earth3P Medium (0.7° % 0.7°) Moderate (r = 0.68) Moderate Complete Moderate
MRI-AGCM3-2 High (0.56° x 0.56°) Good (r=0.78) Good Limited High
2.4 THA Indicators understand the impacts of human activities,

The Indicators of Hydrologic Alteration (IHA)
is a user-friendly tool developed by The Nature
Conservancy to measure flow characteristics
using 32 IHA indicators (Table 3) and 34
Environmental Flow Components (EFC)
indicators (Table 4) [Richter et al., 1996]. For
example, the IHA tool can calculate the
magnitude and duration of annual minimum

including land use and anthropogenic climate
change, on rivers and groundwater systems.
Comparative analyses can be performed to
describe and quantify changes in extreme
hydrologic elements associated with climate
change. The "zero flow days" indicator was
excluded from this study due to its limited
relevance in tropical regions. IHA version 7.1

was used to calculate extreme flows based on
SWAT model outputs, with computations
relying on daily flow data generated from the
SWAT simulations.

and maximum flows over specific periods such
as l-day, 3-day, 7-day, 30-day, and 90-day
intervals. These indicators provide
policymakers, water managers, hydrologists,
and researchers with valuable information to

Table 3. List of 32 IHA parameters adopted in this study
Hydrological Parameters
Mean or median discharge for each month (Includes 12 parameters)
- Annual minimum 1-day average flow
- Annual minimum 3-day average flow
- Annual minimum 7-day average flow
- Annual minimum 30-day average flow
- Annual minimum 90-day average flow
- Annual maximum 1-day average flow
- Annual maximum 3-day average flow
- Annual maximum 7-day average flow
- Annual maximum 30-day average flow
- Annual maximum 90-day average flow
- Number of zero-flow days
- Base flow index: mean or minimum 7-day flow per year (12 parameters
total)
- Date of minimum 1-day flow occurrence
- Date of maximum 1-day flow occurrence
- Number of low flow pulses per year
- Number of high flow pulses per year
- Mean or median duration of low flow pulses (in days)
- Mean or median duration of high flow pulses (in days)
- Rise rate: mean or median of all positive differences between
consecutive daily flows
- Fall rate: mean or median of all negative differences between
consecutive daily flows

IHA Parameters
Group 1: Monthly Flow Magnitude

Group 2: Magnitude and Duration
of Annual Extreme Flows

Group 3: Timing of Annual
Extreme Flows

Group 4: Frequency and Duration of

High/Low Pulses

Group 5: Rate and Frequency of
Flow Changes
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Table 4. List of 34 environmental flow component (EFC) parameters adopted in this study

EFC Parameters Environmental Flow Components

Low Flows Monthly low flows: mean or median low flow for each month

- Frequency of extreme low flows annually or seasonally
- Mean or median duration of extreme low flows (days)
- Peak flow (minimum during event)

- Timing of event (date of peak low flow)

- Frequency of high flow pulses annually or seasonally
- Mean or median duration of high flow pulses (days)
- Peak flow (maximum during event)

- Rise rate
- Fall rate
- Frequency of small floods annually or seasonally
- Mean or median duration of small floods (days)

- Peak flow (maximum during event)

- Timing of event (day of year)

- Rise rate
- Fall rate
- Frequency of large floods annually or seasonally
- Mean or median duration of large floods (days)

- Peak flow (maximum during event)

- Timing of event (day of year)

- Rise rate
- Fall rate

Extreme Low Flows

High Flow Pulses

Small Floods

Large Floods

2.5 Model Setup and Input Data model,;

The overall framework of this study is
illustrated in Figure 2 and includes the
following steps:
(1) collection of input data for the SWAT
model;

(2) downloading and bias-correcting CMIP6
climate data;
(3) calibration and validation of the SWAT

(4) integration of Sixth Assessment Report
scenarios with the calibrated SWAT model;
(5) calculation of extreme flow indicators using
IHA metrics; and
(6) comparison of extreme flow variations
between the future period (2030-2050) and the
historical baseline (1990-2019).
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Figure 2. Flow chart of this study

The SWAT model requires three geophysical
input layers: land wuse, soil type, and
topography. The digital elevation data were
derived from the Shuttle Radar Topography
Mission (SRTM). Land use data (2015) were
obtained from the Forest and Rangeland
Organization, while soil data were extracted
from the FAO-UNESCO soil map. Daily
climate inputs to the SWAT model included
precipitation, maximum, and minimum
temperature,  collected  from  regional
meteorological stations for the period 1990-
2019. Streamflow data from hydrometric
stations were used for model calibration and
validation.

Five slope classes (0-15%, 15-30%, 30-45%,
45-60%, and >60%) were defined during
model setup. The next step involved
delineating Hydrologic Response  Units
(HRUs), the most minor spatial units in SWAT,
combining similar land-use, soil, and slope
characteristics within each sub-basin for
integrated hydrological computations.

SWAT has demonstrated reliable performance
in simulating monthly streamflow under
various climatic conditions in Kelantan, as well
as historical drought events [Tan et al., 2010;
Tan, 2017]. This study applied a new SWAT
configuration calibrated wusing parameter

ranges and sensitivity analyses from previous
studies [Tan et al., 2010; Tan, 2017]. The
calibration and validation periods were set to
1994-2012 and 2013-2017, respectively, using
observed flow data from the Pirdan
hydrometric station on the Sarbaz River.

3. Results and Discussions

3.1. SWAT Calibration and Validation

The SWAT model was calibrated using the
Sequential Uncertainty Fitting Version 2
(SUFI-2) algorithm within the SWAT-CUP
software package. A total of 10,000 simulations
were conducted during the calibration process
to ensure convergence and robust parameter
estimation. The following settings were used:

e [Initial Parameter Ranges: Based on
previous studies in similar climatic
regions and sensitivity analysis results.

e Number of Iterations: 6 iterations were
performed to refine parameter bounds
and reduce uncertainty bands.

e Stopping Criterion: The calibration was
stopped when the change in the
objective function (P-factor and R-
factor) between successive iterations
fell below a predefined threshold (i.e.,
less than 1% improvement over two
consecutive iterations).
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e Sensitivity Analysis: Conducted before

calibration to identify the most
influential ~ parameters,  including
ALPHA BF  (baseflow  recession
coefficient), CN2 (SCS curve number),
and CH K2 (channel hydraulic
conductivity).

e Performance Metrics: Nash—Sutcliffe
Efficiency (NSE) and coefficient of
determination (R?*) were used as

primary  indicators  of = model
performance.

e These settings ensured an effective
balance  between  computational

efficiency and model accuracy. The
detailed configuration is summarized in
Table 5 (below).

Table 5. The detailed configuration is summarized

Parameter Initial Final Calibrated
Range Value
ALPHA BF 0.0-1.0 0.42
CN2 50-90 78

CH K2 10-100 65 mm/hr
- mm/hr
Number of — 10,000
Simulations
Number of o 6
Iterations
&lt; 1%
Stopping Criteria — improvement
over 2 iterations
Objective ) NSE = 0.66, Rz =
Functions NSE, R 0.87

Table 6 shows that the baseflow recession
coefficient (ALPHA BF), the SCS curve
number for initial moisture conditions (CN2),
and the effective hydraulic conductivity in the
main channel alluvium (CH_K2) are the most
sensitive parameters for calibrating monthly
streamflow. ALPHA BF reflects baseflow
sensitivity to changes in groundwater recharge,
while CN2 represents soil permeability, land
use, and antecedent soil moisture conditions. At
the same time, CH K2 controls the exchange
of water between groundwater and the river
system.

Table 6. Final ranking of SWAT performance

Row Parameter Name

Minimum Index Maximum Index

v__ ALPHA BF.gw
v__ CH K2.rte
r__CN2.mgt

r SOL AWC().sol
v_ RCHRG DP.gw
v__ GWQMN.gw
r CH N2.rte
v__ REVAPMN.gw
v__SURLAG.bsn
v__ESCO.bsn
v__ CH K2.rte
r SOL K(1).sol
r SOL BD(1).sol
v__SFTMP.bsn
v__SMTMP.bsn
v__SMFMX.bsn
v__SMFMN.bsn
v__ TIMP.bsn
v__EPCO.bsn
v__ GWHT.gw
v__ OV N.hru

[N T N T N L e Y g S G S —y
N = SO OVWAANNDEWN = PRI N AW —

23

v__ GW_DELAY.gw

v__ GW_REVAP.gw

0 1
0 500
0.5- 0.5
0 500
0.5- 0.5
0.02 0.2
0 1
0 5000
0.5- 0.5
0 500
0.05 24
0 1
0 10
-0.8 0.8
-0.8 0.8
-20 20
-20 20
0 20
0 20
0 1
0 1
0 1
0 30

v_ indicates that the given value replaces the original parameter value. R means that the value of the parameter is

added to the value of 1 and multiplied by the original value.
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Figure 3 compares observed and simulated
monthly streamflow at the Pirdan hydrometric
station on the Sarbaz River during the
calibration (1994-2012) and validation (2013—
2018) periods. Overall, the simulated monthly
flow shows a good agreement with the
observed data. The model performance,
evaluated using the  coefficient of

B
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determination (R?) and  Nash-Sutcliffe
Efficiency (NSE), was ranked as "very good"
for both the calibration period (R* = 0.87, NSE
= (.66) and validation period (R> = 0.91, NSE
0.59), indicating reliable simulation
capability at the monthly scale.
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Figure 3. The observed and simulated flow of extracted swat in the swat cup environment

Figure 4 compares the climatology of monthly
precipitation, maximum temperature, and
minimum temperature from 1990 to 2014 based
on observed data, raw CMIP6 models, and
bias-corrected simulations. The raw CMIP6
models generally underestimate November and
December precipitation, while an inconsistent
pattern is observed in the other months. The
HighResMIP models simulate the peak
monthly rainfall one month earlier than
observed, in November. The FGOALSf3-L
model performs relatively poorly, significantly
underestimating precipitation over KRB,
particularly during the Southwest Monsoon
(SWM) season (June to September).

Notably, the original HighResMIP models
generally perform Dbetter at simulating

precipitation magnitude than the coarse-
resolution Regional Climate Models (RCMs)
from CORDEX-SEA, which tend to
overestimate observed rainfall by up to 5 times
in certain months in the same basin [Tan et al.,
2020]. As shown in Figure 4d, the Quantile
Mapping (QM) approach effectively corrects
model biases in capturing the timing of
monthly  precipitation peaks (e.g., in
December) and the overall rainfall amounts
across all simulations. Moreover, high-
resolution (HR) simulations show less
precipitation  overestimation than  low-
resolution (LR) simulations during the study
period.



Shahrakizad., 2025 / Journal of Hydraulic and Water Engineering (JHWE), Vol. 2, No. 2, 51-72. 63

.'(a)

:‘b’/",.s

Precipitation (mm/month)
Daily Max Temperature (°C)
v

Precipitation (mm/month)
.
Daily Max Temperature (°C)

................
''''''''

S EFETEY D
JXC28 2%3s3

Ay
we /1 Somaaa

SIIJATIXSRE

Coserved
- Mad LM
Mad NN
- Mad MM
(N

= CNRM R
(CLANTH
» ) VR M

o (N oo

o ees 1GOMSH
54 GF

U _Mear
s LR
U MR

Daily Min Temperature (°C)

Daily Min Temperature (°C)
. S~~~

Cv‘ SIS0 >y
I JTIXCZE

Figure 4. Annual cycles of monthly precipitation (a,d), monthly mean daily maximum (b,e), and minimum
temperature (c,f) for the ten CMIP6 HighResMIP experiments, compared to observations during the period
1990~2014: a—c) original; (d—f) bias corrected for the Sarbaz River basin

Overall, most CMIP6 HighResMIP models
reasonably capture the observed warm periods
in April and September, as indicated by
monthly averages of daily maximum and
minimum temperatures (Figure 4b, c, e, f),
particularly across inter-seasonal periods.
However, all HighResMIP models tend to
underestimate monthly maximum
temperatures, while most of them overestimate
monthly minimum temperatures, except for
CNRM-CM6-1-HR, EC-EARTH3P, and
GFDL-CM4C192. Minimum temperatures in
the climatological simulations performed better
than maximum temperatures, as the ensemble
mean was much closer to the observed data.
Similar to precipitation, the biases in both
maximum and minimum temperatures are
significantly reduced after applying the
Quantile Mapping (QM) bias correction
method, as illustrated in Figures 4e and 4f.
Compared to low-resolution (LR) simulations,

high-resolution (HR) models show less
overestimation of daily minimum
temperatures. However, no  significant

improvement was found in the simulation of
daily maximum temperatures in HR models.

3.2 Climate Change Projections

Figure 5 presents the projected annual and
monthly changes in precipitation, daily
maximum, and minimum temperatures over the
period 2021-2050 relative to the historical
baseline (1990-2014). Annual rainfall is
projected to increase significantly by 6.9%. At
the monthly scale, rainfall is expected to rise by
0.94% (October) to 15.1% (December), except
in April, which shows a slight decrease of
2.4%. Statistically significant increases in
monthly average precipitation are observed in
June, July, August, and December (Figure 5a),
indicating an overall upward trend in rainfall
during these months.

The annual mean of daily maximum and
minimum temperatures is projected to increase
by 0.8 °C and 0.9 °C, respectively, during the
future period compared to the historical period
(Figure 5b). These warming trends are slightly
higher than the long-term historical warming
rates (0.1 °C/decade and 0.3 °C/decade for
maximum and minimum temperatures,
respectively) from 1990 to 2018. Every month,
both maximum and minimum temperatures are
expected to rise between 0.7-1.0 °C, with the
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highest warming projected for May and both annual and monthly scales (Figure 5b),
November (Figure 5b). supporting the existing literature on regional
Significant differences are evident between  warming trends under a near-future climate

future and historical temperature averages at  scenario (the next 30 years).
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Figure 5. Projected changes in (a) precipitation, (b) maximum and (c) minimum temperatures between 2014 1990
and 2050 and 2021 in the Sarbaz river basin.

3.3 Hydrological Extremes Under Future the 1-, 3-, 7-, 30-, and 90-day minimum and
Climate Conditions maximum flows are projected to increase
Figure 6 compares projected hydrological significantly between 7.2-8.2% and 10.4—
extremes at the Pirdan hydrometric station on  28.4%, respectively, during the future period.
the Sarbaz River between the future period  Notably, high variability is observed in extreme
(2021-2050) and the historical baseline (1990—  peak flows (1-, 3-, and 7-day maxima),
2014). Annual and monthly streamflow are suggesting a potential increase in flood
projected to increase by 9.9% and 3.5%-16.8%, magnitude in the near future. Regarding
respectively, based on the ensemble mean of 10 baseflow conditions, a slight decrease of 0.9%
HighResMIP models. Higher increases (>10%) is projected for the future period. This suggests
are expected during June to August and that groundwater contributions to streamflow
December. A statistically significant difference may remain relatively stable compared to
in mean flow at the 95% confidence level is  current levels, ensuring a similar freshwater
observed at the annual scale and for specific  supply capacity. However, if water demand
months, including December—January, March, rises due to future population growth, increased
and June—October, mirroring the trends seen in  pressure on water resources could lead to
projected monthly precipitation changes. Inthe  potential water stress. The models project an
next step, we analyze key indicators that define  increase in the magnitude of high-flow events,
the magnitude of annual flow events over ranging from 1.0% to 25.3% (equivalentto 1.87
various durations, as outlined in the second to 46.27 m’/s) for minimum flows and from
group of Indicators of Hydrologic Alteration 0.4% to 16.2% (0.73 to 29.67 m?¥/s) for
(IHA), listed in Table 1. As shown in Figure 6b, maximum flows. This suggests that future
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extreme flow events are likely to be delayed by
several days to weeks compared to historical
patterns. The fourth group of the Indicators of
Hydrologic Alteration (IHA) captures the
frequency and  duration of extreme
hydrological pulses. Results indicate no
significant change in the number of low-flow
pulses. However, a notable 22.7% increase in
the number of high-flow pulses is projected.
The duration of both low- and high-flow pulses
is expected to change slightly, with ensemble
mean changes of 3.3% and 5.9%, respectively.

The final IHA group evaluates the rate and
frequency of flow condition transitions. A
substantial increase of 31.9% in the rise rate
and 25.5% in the fall rate is projected at the
Pirdan station, indicating that rapid increases or
decreases in streamflow are more likely in the
future.  Additionally, the number of
hydrological reversals—daily flow shifts from
increasing to decreasing, or vice versa —is
projected to rise by 11.6%. This implies a
greater frequency of abrupt flow fluctuations
under future climate conditions.
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Figure 6. Projected changes in hydrological extremes represented by 32 IHA parameters of (a) monthly flows, (b)
amount and duration, (c¢) timing, (d) frequency and duration, and () rate and frequency between the 1990s. -2014 is
shown. and 2021-2050 at Pirdan station of Sarbaz river

3.4 Environmental Flow Condition (EFC)
Changes

In this study, Environmental Flow Components
(EFCs) were categorized into monthly low
flows, extremely low flows, high-flow pulses,
small floods, and large floods, given their
critical importance in maintaining the
ecological integrity of river systems. The first
EFC group represents monthly groundwater-
dependent low flows; therefore, any changes in
these parameters may reflect shifts in
groundwater availability. Overall, a slight

decrease in monthly low flows is projected for
April, May, and October through December,
ranging from 0.2% to 1.1%, based on
ensemble-mean projections, as shown in Figure
7. In contrast, monthly low flows during July to
September are expected to increase
significantly by 4.3% to 9.4% at the 95%
confidence level. The projected changes in
EFCs could have significant ecological
implications, including impacts on aquatic
habitats, fish migration, and riparian
vegetation. For instance, reductions in low
flows during dry months may threaten the
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survival of species dependent on stable flow
conditions, while increases in flood pulses
could lead to habitat disturbance and erosion.
Understanding these changes is crucial for
developing sustainable water management
plans that prioritize ecological flows and
preserve riverine ecosystem health under future
climate scenarios.

3.5. Discussion

Climate change is expected to exert a more
significant influence on hydrological extremes
compared to environmental flow components,
as evidenced by a greater number of
statistically ~ substantial ~ Indicators  of
Hydrologic Alteration (IHA) during the 2021
2050 period (Figure 6), in comparison to the
Environmental Flow Components (EFC)
indicators  (Figure 7). Identifying and
understanding projected shifts in EFCs is vital
for developing adaptive water management
policies that balance ecological sustainability
with human water demands. For instance,
maintaining minimum flow levels during dry
seasons is crucial for aquatic biodiversity, and
alterations in flood pulse timing and magnitude
may influence sediment transport and habitat
connectivity. The statistical  evaluation
demonstrated that the SWAT model provided
acceptable performance in simulating monthly
streamflow. Changes in low flows and flood
pulses directly influence the ecological health
of riverine habitats. For example, reductions in
groundwater-dependent low flows in certain
months may degrade habitat for species that
rely on stable flow conditions. At the same
time, increases in high-flow pulses could erode
spawning grounds and disrupt spawning. These
shifts in EFCs are critical for understanding
future hydrological resilience and conservation
needs. One possible explanation for this
reasonable performance could be the limited
spatial density of rain gauges in the region,
which may hinder the accurate representation
of intense daily precipitation events at finer
spatial resolutions [Bador et al., 2020].
Moreover, previous studies have indicated that
the SWAT model tends to underestimate peak

flows in various regions, including river basins
in Spain [Jimeno-Saez et al., 2018], Brazil
[Pereira et al., 2016], and Hawaii [Leta et al.,
2016]. However, according to Crisan and
Arnold [68], further research is required to
evaluate whether model improvements can
effectively  address  these  limitations.
Therefore, incorporating detailed analysis of
these ecological flow components into future
environmental and hydrological assessments is
essential for comprehensive ecosystem
management.

Climate projections are consistently regarded
as one of the primary sources of uncertainty in
hydroclimatic impact modeling [Kundzewicz
et al., 2018]. Given that high-resolution (HR)
models have been shown to better capture the
characteristics of extreme precipitation events
compared to their low-resolution (LR)
counterparts [Liang et al., 2021], it can be
expected that HR models provide more
accurate assessments of future precipitation
extremes. Among the models evaluated in this
study, projected changes in future precipitation
intensity differ significantly between HR and
LR models. The average precipitation change
during the January—December period is notably
higher with HR models, with a peak increase of
9.6% compared to 5.0% with LR models
(Figure 5). Similarly, the projected changes in
monthly streamflow are significantly greater
during the November—January period, reaching
11.8% for HR models compared to only 3.2%
for LR models. Moreover, the magnitude and
duration of maximum 1-day to 90-day flows
show larger increases in HR models than in LR
models, with the most significant differences
observed in 1-day peak flows—projected to
increase by up to 35.1% in HR models versus
12.8% in LR models (Figure 6). These results
indicate that significant flood events under
future climate scenarios are considerably more
pronounced in HR model simulations than in
LR models. For example, the frequency of
large floods is projected to increase by 119% in
HR models, compared to 44.4% in LR models
(Figure 7).
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This cross-comparison of simulations at
different resolutions demonstrates that results
from climate simulations with relatively coarse
spatial resolution should be interpreted with
caution. The relationship between model
performance in simulating regional
precipitation and its spatial resolution is
complex. For instance, Liang et al. [2021]
found that the high-resolution version of
HadGEM3-GC3.1 showed a stronger ability to
capture Borneo vortices during the Northeast
Monsoon (NEM) season and their associated
rainfall over Malaysia compared to its low-
resolution counterpart. This partly explains
why high-resolution simulations such as MRI-
S and Had-HM reproduce the heavy rainfall
periods (November and December) in the study
area better than lower-resolution experiments,
as shown in Figure 4a. We note that whether to
use all available climate models or only those
with superior performance in hydrological
impact assessments remains a debated topic in
optimal model selection [Kundzewicz et al.,
2018].

Enhancing the quality of input data for
hydrological simulations is crucial in climate
impact studies [Tan et al., 2014; Wang et al.,
2011], and is primarily based on statistical

approaches. For instance, Tan et al. [2017]
applied a linear scaling method to correct
biases in CMIP5 GCMs before using them as
inputs in SWAT modeling. In this study, a
statistical bias correction approach based on
Quantile Mapping (QM) is employed to adjust
biases in HighResMIP model experiments.
This method has also been widely used for bias
correction of dynamically downscaled
simulations from CORDEX-SEA experiments
over Malaysia [Ngai et al., 2020] and Southeast
Asia [Ngai et al., 2017]. Shrestha et al. [2017]
suggested that there may be no significant
difference between simple (e.g., linear scaling)
and more complex (e.g., QM) bias correction
methods in monthly streamflow modeling.
However, Luo et al. [2018] compared seven
bias correction techniques using precipitation
and temperature data from the Kaidu River
basin in China and reported that the impact of
the different correction schemes was more
pronounced on rainfall than on temperature.
Further research is needed to investigate how
the choice of bias correction method affects
GCM-based projections, and how Regional
Climate Models (RCMs) influence daily
streamflow simulations in the studied region
and surrounding maritime continent areas.
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4. Conclusions

Extreme  hydro-climatic  events have
significant impacts on both the environment
and human society. This study integrates the
latest high-resolution Global Climate Model
(GCM) simulations from HighResMIP with
the SWAT hydrological model to project
potential future changes in hydrological
extremes over the Kelantan River Basin
(KRB). The SUFI-2 algorithm was applied for
sensitivity analysis, calibration, and validation
of the SWAT model, aiming to enhance its
reliability in simulating long-term daily
streamflow. During this process,
ALPHA BF, CN2, and CH K2 were
identified as the most sensitive parameters in
SWAT calibration, consistent with previous
studies [Tan et al., 2020]. The raw outputs of
HighResMIP experiments tend to
underestimate monthly precipitation during
November and December. Additionally, the
models simulate an earlier peak in monthly
rainfall (approximately one month earlier)
compared to observations. Most HighResMIP

experiments underestimate monthly
maximum temperatures and overestimate
minimum  temperatures relative to

observations. Based on bias-corrected climate
projections using the Quantile Mapping (QM)
method, annual precipitation is projected to
increase significantly by 6.9%. At the same
time, maximum and minimum temperatures
are expected to rise by 0.8°C and 0.9 °C,
respectively, during the 2021-2050 period
compared to the baseline period (1990-2014).
Monthly precipitation is projected to increase
across nearly all months, ranging between
0.9% and 15.1%, except for March, which
shows a slight decrease of 2.4%. Monthly
maximum and minimum temperatures are
also projected to rise by 0.7-1.0 °C.

Future simulations indicate a 9.9% increase in
annual mean streamflow during the 2021-—
2050 period compared to the baseline period
of 1990-2018. Concurrently, monthly
streamflow is projected to rise by 3.5% to
16.8% across all months, with statistically
significant changes observed. The magnitudes
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of'the 1-, 3-, 7-, 30-, and 90-day minimum and
maximum flows are expected to increase
notably, reaching up to 28.4%. In contrast, the
baseflow index is projected to experience only
minor changes, with a slight decrease of
approximately 0.9%. The timing of extreme
flow events is expected to shift, with delays of
several days to weeks in their occurrence. The
duration of both low- and high-flow pulses is
anticipated to show only minor variations
compared to the baseline period. However, the
rise and fall rates of streamflow are projected
to increase, indicating a higher likelihood of
rapid increases or decreases in flow under
future climate conditions.

For the 2021-2050 period, projections
indicate a slight decrease in monthly low
flows during April, May, October, November,
and December compared to the baseline
period of 1990-2018. In contrast, a significant
increase in low flows ranging from 4.3% to
9.4% 1is expected from July to September.
Future simulations also project reductions of
15.7% and 16.5% in the duration and
frequency of extremely low flows,
respectively. Regarding high-flow pulses,
future projections show an increase of 1.8% to
18.6% compared to the baseline period.
Overall, both small and large flood indices are
projected to increase in the future. However,
only the changes in the duration of minor
floods and the frequency of large floods are
statistically significant.

This study establishes a framework for the
comprehensive assessment of hydro-climatic
extremes by integrating hydrological
modeling with  high-resolution climate
simulations. Further research is needed to
better understand the SWAT model's limited
ability to capture both peak and low flows. As
more CMIP6 GCM simulations at varying
model resolutions become publicly available,
a comprehensive investigation into how
horizontal and vertical resolutions of GCMs
influence SWAT simulations will be
conducted in the near future. Ultimately, this
study demonstrates that both high- and low-
resolution climate models yield substantially

different projections of future hydroclimatic
extremes. Therefore, a quantitative climate
forecasting framework combined with
ensemble-based techniques should be
developed to minimize uncertainties in
extreme event simulations.

One notable limitation of this study is the
mismatch in temporal resolution between the
SWAT hydrological model calibration and the
Indicators of Hydrologic Alteration (IHA)
used to assess flow regime changes. The
SWAT model was calibrated using monthly
observed streamflow data, whereas several
IHA indicators—particularly those related to
extreme flows (e.g., 1-day, 3-day, and 7-day
minimum and maximum flows)—require
daily  time-step data  for  accurate
representation. This discrepancy may affect
the precision of the IHA-based assessment,
especially for short-term hydrological events.
While monthly-scale calibration ensures
reasonable accuracy in capturing long-term
trends and seasonal variations, it may not fully
capture the dynamics of short-duration high-
and low-flow events, which are critical for
ecological and  environmental  flow
assessments. Although daily simulated flow
data were extracted from the model for IHA
calculations, the lack of daily calibration
limits the confidence in these results.
Therefore, future studies should aim to
calibrate the SWAT model at a daily time step
using high-resolution observed flow data to
improve the reliability of IHA-based analyses.
In the absence of such data, caution is advised
when interpreting the ecological implications
derived from IHA indicators in this study.
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