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 This study introduces a framework for assessing climate change and flow 

conditions by integrating the latest climate simulations from the CMIP6 project 

(HadGEM3-GC31-LL model) with the Soil and Water Assessment Tool (SWAT) 

and evaluating the influence of different climate model resolutions. A total of 66 

hydrological and environmental flow indicators from the Indicators of Hydrologic 

Alteration (IHA) were calculated to assess future extreme flows in the Sarbaz 

River Basin, located in Sistan Province, which is particularly vulnerable to 

flooding. Results indicate that by the 2030–2050 period, compared to the baseline 

period of 1990–2019, annual precipitation, streamflow, and maximum and 

minimum temperatures are projected to increase by 6.9%, 9.9%, 0.8°C, and 0.9°C, 

respectively. Monthly precipitation and streamflow are expected to rise, 

especially during the monsoon season (June–September) and early wet periods 

(December). The magnitude of minimum 1-, 3-, 7-, 30-, and 90-day flows is 

projected to increase by 7.2% to 8.2%, while peak flows could rise by 10.4% to 

28.4%. Finally, significant differences were observed between high- and low-

resolution climate models, with high-resolution models predicting an 11.8% 

increase in average monthly flows during November–January, compared to just 

3.2% in low-resolution models. 
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1. Introduction 

 The increasing frequency and severity of 

extreme climate events, such as droughts and 

floods, are largely linked to climate change, 

causing serious social and economic impacts 

(Giorgi et al., 2018; Raikes et al., 2019). 

Scientific studies show that global warming, 

mainly caused by human-emitted greenhouse 

gases, poses a significant threat to the 

environment, ecosystems, and human 

societies. In recent decades, Asia has faced 

increased rainfall and higher temperatures 

due to global warming (Tan et al., 2021; Tong 

et al., 2019). These changes significantly 

affect hydrological systems, increasing 

water-related risks such as floods and 

droughts (François et al., 2019; Kundzewicz 

et al., 2014). Severe droughts can reduce 

agricultural productivity and freshwater 

resources, leading to social and economic 

losses (Balti et al., 2020). To assess trends in 

hydro-climatic extremes in a specific region, 

long-term observational data are essential, as 

they provide the most reliable source for 

understanding the hydro-climatic system (Fu 

et al., 2010). Long-term observational data 

are crucial for analyzing hydro-climatic 

extremes, with hydrological models — 

whether distributed (e.g., SWAT) or semi-

distributed (e.g., AWBM, IHACRES) — 

essential tools for understanding these 

processes and evaluating mitigation 

strategies. These models are versatile, cost-

effective, and applicable across various 

scales. Additionally, outputs from Global 
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Climate Models (GCMs) are valuable for 

simulating climate-hydrology interactions 

(Ghorbani Fard, 2022; Shepherd et al., 1999; 

Singh and Woolhiser, 2002; Borah and Bera, 

2004; Daniel, 2011; Fu et al., 2019; Betts et 

al., 2018). Vannière et al. used the high-

resolution HadGEM3A-GA3.0 model (~60 

km) within CMIP5 to study the impacts of 

RCP8.5 on global freshwater flows, finding 

significant regional variations, with river 

flows in South and East Asia increasing up to 

twice the historic average (Vannière et al., 

2019). The newer CMIP6 models, part of 

Phase 6 of the CMIP, feature advanced 

capabilities but still have coarse resolutions 

(100-200 km) (Eyring et al., 2016; Kim et al., 

2020; Haarsma et al., 2016). Studies on 

Southeast Asia indicate spatially varied 

changes in river streamflow, with projections 

under the CORDEX-SEA framework 

suggesting drier conditions in southern 

regions and wetter conditions in the north by 

the end of the 21st century (Raghavan, 2013; 

Okwala et al., 2020; Supari et al., 2020). A 

study on Southeast Asia's hydroclimatic 

conditions (SEA-HOT) combined Regional 

Climate Models (RCMs) from the CORDEX-

SEA framework with the SWAT 

hydrological model to evaluate 

meteorological droughts under current and 

future climates. While RCMs provide high-

resolution climate data, they face limitations, 

such as the lack of two-way interactions with 

large-scale atmospheric patterns (Bowden et 

al., 2012; Harris et al., 2010). The SWAT 

model is widely used for hydrological 

simulations and watershed runoff analysis, 

supporting water resource management and 

environmental research (Arnold et al., 1998; 

Arnold et al., 2012a; Williams et al., 2008; 

Bieger et al., 2017). Today, SWAT is one of 

the most widely used hydrological models 

globally, applied to various water resource 

issues across different watershed sizes and 

environments (CARD, 2019). Its 

performance has been evaluated in four main 

ways: general assessments of flow and 

sediment, land management and erosion 

studies, region-specific analyses, and 

applications of water management strategies. 

Overall reviews highlight SWAT's 

applications, performance, and future 

research directions (Gassman et al., 2007). 

Numerous thematic studies demonstrate 

SWAT’s effectiveness in simulating 

streamflow and assessing climate change 

impacts (Krysanova and White, 2015; 

Gassman et al., 2014; Douglas-Mankin et al., 

2010; Gassman and Wang, 2015; Tuppad et 

al., 2011). As SWAT's global use expands, 

synthesizing its findings helps developers 

and new users identify practical applications, 

model strengths, and key challenges in 

specific regions. Regional reviews have been 

conducted for the Upper Nile River Basin 

(van Griensven et al., 2012), Brazil 

(Bressiani et al., 2015), Southeast Asia (Tan 

et al., 2019a), and the Talar watershed, where 

the model was evaluated using both global 

and regional soil maps. Calibration with the 

SUFI-2 algorithm indicated that the 

SOL_AWC parameter was highly sensitive, 

and the regional soil map yielded more 

accurate results in certain sub-basins 

(Mohseni et al., 2023). Additionally, 

emerging applications include 

ecohydrological modeling (Krysanova and 

Arnold, 2008), ecosystem services 

(Francesconi et al., 2016), pesticide fate and 

transport (Wang et al., 2019), and daily-scale 

studies (Brighenti et al., 2019). Therefore, 

this study aims to introduce a novel 

framework for assessing the impacts of 

climate change on river flow in tropical 

regions by integrating the SWAT model 

indices, CMIP6 data, and IHA indicators. 

The main objectives of this research are: (1) 

to evaluate the capability of CMIP6 models 

at the basin scale; (2) to assess the 

performance of the SWAT model in long-

term streamflow simulation; (3) to quantify 

hydrological variables for the periods 1990–

2019 and 2030–2050 under various CMIP6 

GCM scenarios with both high and low 

spatial resolutions.The results provide a 

deeper understanding of how CMIP6 spatial 

resolution affects the accuracy of streamflow 

simulations. Moreover, this study presents a 
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comprehensive and up-to-date framework for 

evaluating future climatic conditions in 

Sistan and Baluchestan province and other 

tropical regions in developing and less 

developed countries, which can serve as a 

basis for climate adaptation strategies and 

environmental protection policies. 

 

2. Materials and Methods 

2.1. Study Area 

The Sarbaz watershed is the upstream basin 

of the Pishin Dam. It is one of the sub-basins 

of the rivers in Balochistan, located within 

the province and bounded by the coordinates 

60°56′ to 61°35′ E and 26°5′ to 27°0′ N. To 

the east, it borders Pakistan; to the south, it is 

adjacent to Bahu Kalat and Dashtiari; to the 

west, it is limited by the Kajo watershed; and 

to the north, it is bounded by the Makran 

mountain range. This watershed, upstream of 

the Pishin hydrometric station, has an 

average elevation of 932 meters above sea 

level. The basin covers 6,324 square 

kilometers and has an average slope of 

16.8%. 

The Sarbaz River is the only permanent river 

in Balochistan. The basin's northern regions 

predominantly influence the flow of the 

Sarbaz River. The river's base flow is very 

low, while its flood flow is significant even 

at low return periods. The river features both 

a large and a small riverbed. The river’s flow 

regime corresponds to the precipitation 

pattern in summer and winter. The peak 

summer flows are primarily influenced by 

monsoon rainfall, whereas the peak winter 

flows are caused by precipitation from cold 

fronts originating from Siberia and the 

Mediterranean. Figure 1 illustrates the 

geographical location of the Sarbaz 

watershed. 

 

Figure 1. Study area 

2.2. SWAT Model 

The Soil and Water Assessment Tool (SWAT) 

is a semi-distributed, continuous-time 

hydrological model developed to assist water 

resource managers in evaluating the impacts of 

various land management practices on river 

discharge and non-point source pollution 

(Arnold et al., 1998). Over the past few 

decades, SWAT has undergone numerous 

developments and enhancements (Gassman et 

al., 2007; Arnold et al., 2012). The model 

typically operates at a daily or monthly time 
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step and is designed for long-term continuous 

simulation. SWAT can be used for simulating 

long-term hydrology and climate patterns. 

While it performs well for average streamflow 

analysis, it requires high-resolution temporal 

input—at least daily—to adequately simulate 

extreme flood events. For robust climate 

studies that include both severe droughts and 

floods, long-term climatic data covering at least 

30 years at daily resolution is recommended as 

input for SWAT simulations (Tan et al., 2020). 

Model calibration is essential for ensuring the 

reliability of SWAT outputs, and this is 

commonly achieved through the SWAT-CUP 

tool, which incorporates various optimization 

algorithms (Abbaspour et al., 2007; 2018). 

Among these, the SUFI-2 (Sequential 

Uncertainty Fitting Version 2) algorithm is 

widely used for calibrating SWAT at both daily 

and monthly time scales. Model performance is 

typically evaluated using statistical indices 

such as the coefficient of determination (R²) 

and the Nash–Sutcliffe Efficiency (NSE) (Nash 

et al., 1970). The values of R² range from 0 to 

1, while NSE ranges from -1∞ to 1, with 1 

indicating perfect model performance (Zhang 

et al., 2020). 

 

2.3 CMIP6 Climate Models 

Climate projections are recognized as a 

significant source of uncertainty in 

hydrological and hydroclimatic modeling 

studies focused on future conditions (Tan et al., 

2014; Kundzewicz et al., 2018). These 

uncertainties arise from multiple factors, 

including future socio-economic development 

scenarios, greenhouse gas emissions, aerosol 

emissions, the sensitivity of General 

Circulation Models (GCMs) and regional 

climate models (RCMs), downscaling 

techniques, and bias correction methods. 

Minimizing these uncertainties is regarded as a 

critical future research priority (Kundzewicz et 

al., 2018). The CMIP3, CMIP5, and CMIP6 

climate modeling frameworks have 

progressively enhanced our understanding of 

the Earth’s future climate system (IPCC, 2013). 

In particular, CMIP6 GCMs have been widely 

used in conjunction with SWAT to evaluate the 

long-term impacts of climate change on river 

flows. The sixth phase of CMIP (Coupled 

Model Intercomparison Project), coordinated 

by LLNL (2019), serves as a key input to the 

IPCC Sixth Assessment Report (AR6). The 

latest high-resolution GCM outputs (<50 km) 

from the HighResMIP experiment significantly 

improve spatial resolution compared to the 

coarse outputs from CMIP5 models (Forsythe 

et al., 2019). These high-resolution simulations 

are comparable to those used in RCM-based 

studies (Musie et al., 2020; Tessema et al., 

2020) and are expected to be increasingly 

applied in future SWAT-based studies. Given 

that climate change impact analysis is one of 

the primary applications of the SWAT model 

(Tan et al., 2019a; Gassman et al., 2014; 

CARD, 2019), this study adopts a selection of 

CMIP6 models based on their statistical 

performance during the historical (1990–2014) 

and future (2030–2050) periods. The climate 

data are sourced from the Earth System Grid 

Federation (ESGF) data platform. The SSP5-

8.5 scenario drives simulations for the future 

period—a high-emission pathway within the 

new Shared Socioeconomic Pathways (SSPs) 

framework adopted by the IPCC for AR6. It is 

acknowledged that using only one climate 

scenario (SSP5-8.5) limits the 

comprehensiveness of the climate change 

impact assessment. Future studies will 

incorporate additional scenarios such as SSP2-

4.5 to provide a more balanced evaluation of 

different emission pathways and their 

implications for water resources. Details of the 

selected GCMs, including model developers 

and horizontal resolution, are presented in 

Table 1. 
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Table 1. Summary of GCMs used in the CMIP6 experiments 

 

Modeling Organizations Model Name 
Vertical Resolution 

(Layers) 
Resolution (Longitude 

×Latitude) 
Abbreviation 

The UK Met Office 

Hadley Centre for Climate 

Change 

HadGEM3-

GC31 
85 

1.875◦ × 1.25◦ 
0.83◦ × 0.56◦ 
0.35◦ × 0.23◦ 

HadGEM3-LM 
HadGEM3-MM 
HadGEM3-HM 

French National Centre for 

Meteorological Research 
CNRM-CM6-1 91 

1.406◦ × 1.406◦ 
0.5◦ × 0.5◦ 

CNRM 
CNRM-HR 

27 institutes in Europe 

(Haarsma et al., 2020) 
EC-Earth3P 91 0.703◦ × 0.703◦ EC-Earth 

Meteorological Research 

Institute (Japan) 
MRI-AGCM3-2 60 

0.563◦ × 0.563◦ 
0.188◦ × 0.188◦ 

MRI-H 
MRI-S 

Institute of Atmospheric 

Physics/Chinese Academy 

of Sciences 
FGOALS-f3 32 1.25◦ × 1 ◦ FGOALS-L 

Geophysical Fluid 

Dynamics Laboratory/ 

NOAA (U.S.) 

GFDL-

CM4C192 
33 0.625◦ × 0.5◦ GFDL 

The selection of climate models, particularly 

the HadGEM3-GC31-LL model and other 

HighResMIP models, was based on a 

combination of scientific performance criteria 

and practical considerations. The following key 

factors were used to guide the model selection 

process: 

1-Spatial Resolution: HighResMIP models 

offer significantly higher spatial resolution than 

standard CMIP6 models, enabling a more 

accurate representation of regional climate 

features, especially in areas with complex 

topography or localized precipitation patterns.  

2-Model Performance in Historical 

Simulations: Models were evaluated based on 

their ability to reproduce observed historical 

climate conditions, particularly temperature 

and precipitation trends over the study period. 

Models that showed better agreement with 

observational datasets (e.g., CRU, GPCC, and 

ERA5) were prioritized.  

3-Availability of Required Variables: Only 

models that provide the necessary climatic 

variables (e.g., daily precipitation, maximum 

and minimum temperatures, solar radiation) for 

both historical and future projection periods 

were considered.  

4-Previous Use in Regional Studies: Preference 

was given to models that have been 

successfully applied in similar climatic regions, 

particularly in tropical and subtropical 

catchments in Southeast Asia and South Asia, 

where rainfall-runoff processes are susceptible 

to changes in precipitation patterns.  

5-Data Accessibility: The availability of bias-

corrected and downscaled model outputs 

through reliable platforms, such as the Earth 

System Grid Federation (ESGF), was also 

considered to ensure consistency and 

reproducibility.  

Based on these criteria, the HadGEM3-GC31-

LL model from the HighResMIP ensemble was 

selected as the primary model for detailed 

analysis due to its superior performance in 

capturing seasonal rainfall variability and its 

high-resolution representation of hydrological 

processes. 
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Table 2. Results of climate model evaluation 

Model Name Spatial Resolution 
Historical Performance 

(Correlation with 

Observed Rainfall) 

Extremes 

Representation 

Data 

Availability 

Regional 

Applicability 

HadGEM3-GC31 High (0.5° × 0.5°) Good (r = 0.82) Very Good Complete High 

CNRM-CM6-1 Medium (1.4° × 1.4°) Moderate (r = 0.65) Moderate Complete Moderate 

EC-Earth3P Medium (0.7° × 0.7°) Moderate (r = 0.68) Moderate Complete Moderate 

MRI-AGCM3-2 High (0.56° × 0.56°) Good (r = 0.78) Good Limited High 

2.4 IHA Indicators 

The Indicators of Hydrologic Alteration (IHA) 

is a user-friendly tool developed by The Nature 

Conservancy to measure flow characteristics 

using 32 IHA indicators (Table 3) and 34 

Environmental Flow Components (EFC) 

indicators (Table 4) [Richter et al., 1996]. For 

example, the IHA tool can calculate the 

magnitude and duration of annual minimum 

and maximum flows over specific periods such 

as 1-day, 3-day, 7-day, 30-day, and 90-day 

intervals. These indicators provide 

policymakers, water managers, hydrologists, 

and researchers with valuable information to 

understand the impacts of human activities, 

including land use and anthropogenic climate 

change, on rivers and groundwater systems. 

Comparative analyses can be performed to 

describe and quantify changes in extreme 

hydrologic elements associated with climate 

change. The "zero flow days" indicator was 

excluded from this study due to its limited 

relevance in tropical regions. IHA version 7.1 

was used to calculate extreme flows based on 

SWAT model outputs, with computations 

relying on daily flow data generated from the 

SWAT simulations. 

 

 
Table 3. List of 32 IHA parameters adopted in this study 

IHA Parameters Hydrological Parameters 

Group 1: Monthly Flow Magnitude Mean or median discharge for each month (Includes 12 parameters) 

Group 2: Magnitude and Duration 

of Annual Extreme Flows 

 

- Annual minimum 1-day average flow 

- Annual minimum 3-day average flow 

- Annual minimum 7-day average flow 

- Annual minimum 30-day average flow 

- Annual minimum 90-day average flow 

- Annual maximum 1-day average flow 

- Annual maximum 3-day average flow 

- Annual maximum 7-day average flow 

- Annual maximum 30-day average flow 

- Annual maximum 90-day average flow 

- Number of zero-flow days 

- Base flow index: mean or minimum 7-day flow per year (12 parameters 

total) 

Group 3: Timing of Annual 

Extreme Flows 

- Date of minimum 1-day flow occurrence 

- Date of maximum 1-day flow occurrence 

Group 4: Frequency and Duration of 

High/Low Pulses 

- Number of low flow pulses per year 

- Number of high flow pulses per year 

- Mean or median duration of low flow pulses (in days) 

- Mean or median duration of high flow pulses (in days) 

Group 5: Rate and Frequency of 

Flow Changes 

- Rise rate: mean or median of all positive differences between 

consecutive daily flows 

- Fall rate: mean or median of all negative differences between 

consecutive daily flows 
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Table 4. List of 34 environmental flow component (EFC) parameters adopted in this study 

 
EFC Parameters Environmental Flow Components 

Low Flows Monthly low flows: mean or median low flow for each month 

Extreme Low Flows 

- Frequency of extreme low flows annually or seasonally 

- Mean or median duration of extreme low flows (days) 

- Peak flow (minimum during event) 

- Timing of event (date of peak low flow) 

High Flow Pulses 

- Frequency of high flow pulses annually or seasonally 

- Mean or median duration of high flow pulses (days) 

- Peak flow (maximum during event) 

- Rise rate 

- Fall rate 

Small Floods 

- Frequency of small floods annually or seasonally 

- Mean or median duration of small floods (days) 

- Peak flow (maximum during event) 

- Timing of event (day of year) 

- Rise rate 

- Fall rate 

Large Floods 

- Frequency of large floods annually or seasonally 

- Mean or median duration of large floods (days) 

- Peak flow (maximum during event) 

- Timing of event (day of year) 

- Rise rate 

- Fall rate 

  
 

 

2.5 Model Setup and Input Data 

The overall framework of this study is 

illustrated in Figure 2 and includes the 

following steps: 

(1) collection of input data for the SWAT 

model; 

(2) downloading and bias-correcting CMIP6 

climate data; 

(3) calibration and validation of the SWAT 

model; 

(4) integration of Sixth Assessment Report 

scenarios with the calibrated SWAT model; 

(5) calculation of extreme flow indicators using 

IHA metrics; and 

(6) comparison of extreme flow variations 

between the future period (2030–2050) and the 

historical baseline (1990–2019). 
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Figure 2. Flow chart of this study 

 

The SWAT model requires three geophysical 

input layers: land use, soil type, and 

topography. The digital elevation data were 

derived from the Shuttle Radar Topography 

Mission (SRTM). Land use data (2015) were 

obtained from the Forest and Rangeland 

Organization, while soil data were extracted 

from the FAO-UNESCO soil map. Daily 

climate inputs to the SWAT model included 

precipitation, maximum, and minimum 

temperature, collected from regional 

meteorological stations for the period 1990–

2019. Streamflow data from hydrometric 

stations were used for model calibration and 

validation. 

Five slope classes (0–15%, 15–30%, 30–45%, 

45–60%, and >60%) were defined during 

model setup. The next step involved 

delineating Hydrologic Response Units 

(HRUs), the most minor spatial units in SWAT, 

combining similar land-use, soil, and slope 

characteristics within each sub-basin for 

integrated hydrological computations. 

SWAT has demonstrated reliable performance 

in simulating monthly streamflow under 

various climatic conditions in Kelantan, as well 

as historical drought events [Tan et al., 2010; 

Tan, 2017]. This study applied a new SWAT 

configuration calibrated using parameter 

ranges and sensitivity analyses from previous 

studies [Tan et al., 2010; Tan, 2017]. The 

calibration and validation periods were set to 

1994–2012 and 2013–2017, respectively, using 

observed flow data from the Pirdan 

hydrometric station on the Sarbaz River. 

 

3. Results and Discussions 

3.1. SWAT Calibration and Validation 

The SWAT model was calibrated using the 

Sequential Uncertainty Fitting Version 2 

(SUFI-2) algorithm within the SWAT-CUP 

software package. A total of 10,000 simulations 

were conducted during the calibration process 

to ensure convergence and robust parameter 

estimation. The following settings were used: 

• Initial Parameter Ranges: Based on 

previous studies in similar climatic 

regions and sensitivity analysis results. 

• Number of Iterations: 6 iterations were 

performed to refine parameter bounds 

and reduce uncertainty bands. 

• Stopping Criterion: The calibration was 

stopped when the change in the 

objective function (P-factor and R-

factor) between successive iterations 

fell below a predefined threshold (i.e., 

less than 1% improvement over two 

consecutive iterations). 
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• Sensitivity Analysis: Conducted before 

calibration to identify the most 

influential parameters, including 

ALPHA_BF (baseflow recession 

coefficient), CN2 (SCS curve number), 

and CH_K2 (channel hydraulic 

conductivity). 

• Performance Metrics: Nash–Sutcliffe 

Efficiency (NSE) and coefficient of 

determination (R²) were used as 

primary indicators of model 

performance.  

• These settings ensured an effective 

balance between computational 

efficiency and model accuracy. The 

detailed configuration is summarized in 

Table 5 (below). 
 

Table 5. The detailed configuration is summarized 

Parameter 
Initial 

Range 

Final Calibrated 

Value 

ALPHA_BF 0.0 – 1.0 0.42 

CN2 50 – 90 78 

CH_K2 
10 – 100 

mm/hr 
65 mm/hr 

Number of 

Simulations 
— 10,000 

Number of 

Iterations 
— 6 

Stopping Criteria — 

&lt;1% 

improvement 

over 2 iterations 

Objective 

Functions 
NSE, R² 

NSE = 0.66, R² = 

0.87 

 

Table 6 shows that the baseflow recession 

coefficient (ALPHA_BF), the SCS curve 

number for initial moisture conditions (CN2), 

and the effective hydraulic conductivity in the 

main channel alluvium (CH_K2) are the most 

sensitive parameters for calibrating monthly 

streamflow. ALPHA_BF reflects baseflow 

sensitivity to changes in groundwater recharge, 

while CN2 represents soil permeability, land 

use, and antecedent soil moisture conditions. At 

the same time, CH_K2 controls the exchange 

of water between groundwater and the river 

system. 
 

Table 6. Final ranking of SWAT performance 

Row Parameter Name Minimum Index Maximum Index 

1 v__ALPHA_BF.gw 0 1 

2 v__CH_K2.rte 0 500 

3 r__CN2.mgt 0.5 - 0.5 

4 v__GW_DELAY.gw 0 500 

5 r__SOL_AWC().sol 0.5 - 0.5 

6 v__GW_REVAP.gw 0.02 0.2 

7 v__RCHRG_DP.gw 0 1 

8 v__GWQMN.gw 0 5000 

9 r__CH_N2.rte 0.5 - 0.5 

10 v__REVAPMN.gw 0 500 

11 v__SURLAG.bsn 0.05 24 

12 v__ESCO.bsn 0 1 

13 v__CH_K2.rte 0 10 

14 r__SOL_K(1).sol -0.8 0.8 

15 r__SOL_BD(1).sol -0.8 0.8 

16 v__SFTMP.bsn -20 20 

17 v__SMTMP.bsn -20 20 

18 v__SMFMX.bsn 0 20 

19 v__SMFMN.bsn 0 20 

20 v__TIMP.bsn 0 1 

21 v__EPCO.bsn 0 1 

22 v__GWHT.gw 0 1 

23 v__OV_N.hru 0 30 

v_ indicates that the given value replaces the original parameter value. R means that the value of the parameter is 

added to the value of 1 and multiplied by the original value . 
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Figure 3 compares observed and simulated 

monthly streamflow at the Pirdan hydrometric 

station on the Sarbaz River during the 

calibration (1994–2012) and validation (2013–

2018) periods. Overall, the simulated monthly 

flow shows a good agreement with the 

observed data. The model performance, 

evaluated using the coefficient of 

determination (R²) and Nash-Sutcliffe 

Efficiency (NSE), was ranked as "very good" 

for both the calibration period (R² = 0.87, NSE 

= 0.66) and validation period (R² = 0.91, NSE 

= 0.59), indicating reliable simulation 

capability at the monthly scale. 

 

 

 

 
Figure 3. The observed and simulated flow of extracted swat in the swat cup environment 

 

Figure 4 compares the climatology of monthly 

precipitation, maximum temperature, and 

minimum temperature from 1990 to 2014 based 

on observed data, raw CMIP6 models, and 

bias-corrected simulations. The raw CMIP6 

models generally underestimate November and 

December precipitation, while an inconsistent 

pattern is observed in the other months. The 

HighResMIP models simulate the peak 

monthly rainfall one month earlier than 

observed, in November. The FGOALSf3-L 

model performs relatively poorly, significantly 

underestimating precipitation over KRB, 

particularly during the Southwest Monsoon 

(SWM) season (June to September). 

Notably, the original HighResMIP models 

generally perform better at simulating 

precipitation magnitude than the coarse-

resolution Regional Climate Models (RCMs) 

from CORDEX-SEA, which tend to 

overestimate observed rainfall by up to 5 times 

in certain months in the same basin [Tan et al., 

2020]. As shown in Figure 4d, the Quantile 

Mapping (QM) approach effectively corrects 

model biases in capturing the timing of 

monthly precipitation peaks (e.g., in 

December) and the overall rainfall amounts 

across all simulations. Moreover, high-

resolution (HR) simulations show less 

precipitation overestimation than low-

resolution (LR) simulations during the study 

period. 
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Figure 4. Annual cycles of monthly precipitation (a,d), monthly mean daily maximum (b,e), and minimum 

temperature (c,f) for the ten CMIP6 HighResMIP experiments, compared to observations during the period 

1990~2014: a–c) original; (d–f) bias corrected for the Sarbaz River basin 

 

Overall, most CMIP6 HighResMIP models 

reasonably capture the observed warm periods 

in April and September, as indicated by 

monthly averages of daily maximum and 

minimum temperatures (Figure 4b, c, e, f), 

particularly across inter-seasonal periods. 

However, all HighResMIP models tend to 

underestimate monthly maximum 

temperatures, while most of them overestimate 

monthly minimum temperatures, except for 

CNRM-CM6-1-HR, EC-EARTH3P, and 

GFDL-CM4C192. Minimum temperatures in 

the climatological simulations performed better 

than maximum temperatures, as the ensemble 

mean was much closer to the observed data. 

Similar to precipitation, the biases in both 

maximum and minimum temperatures are 

significantly reduced after applying the 

Quantile Mapping (QM) bias correction 

method, as illustrated in Figures 4e and 4f. 

Compared to low-resolution (LR) simulations, 

high-resolution (HR) models show less 

overestimation of daily minimum 

temperatures. However, no significant 

improvement was found in the simulation of 

daily maximum temperatures in HR models. 

 

 

 

3.2 Climate Change Projections 

Figure 5 presents the projected annual and 

monthly changes in precipitation, daily 

maximum, and minimum temperatures over the 

period 2021–2050 relative to the historical 

baseline (1990–2014). Annual rainfall is 

projected to increase significantly by 6.9%. At 

the monthly scale, rainfall is expected to rise by 

0.94% (October) to 15.1% (December), except 

in April, which shows a slight decrease of 

2.4%. Statistically significant increases in 

monthly average precipitation are observed in 

June, July, August, and December (Figure 5a), 

indicating an overall upward trend in rainfall 

during these months. 

The annual mean of daily maximum and 

minimum temperatures is projected to increase 

by 0.8 °C and 0.9 °C, respectively, during the 

future period compared to the historical period 

(Figure 5b). These warming trends are slightly 

higher than the long-term historical warming 

rates (0.1 °C/decade and 0.3 °C/decade for 

maximum and minimum temperatures, 

respectively) from 1990 to 2018. Every month, 

both maximum and minimum temperatures are 

expected to rise between 0.7–1.0 °C, with the 
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highest warming projected for May and 

November (Figure 5b). 

Significant differences are evident between 

future and historical temperature averages at 

both annual and monthly scales (Figure 5b), 

supporting the existing literature on regional 

warming trends under a near-future climate 

scenario (the next 30 years). 

 
Figure 5. Projected changes in (a) precipitation, (b) maximum and (c) minimum temperatures between 2014 1990 

and 2050 and 2021 in the Sarbaz river basin .

3.3 Hydrological Extremes Under Future 

Climate Conditions 

Figure 6 compares projected hydrological 

extremes at the Pirdan hydrometric station on 

the Sarbaz River between the future period 

(2021–2050) and the historical baseline (1990–

2014). Annual and monthly streamflow are 

projected to increase by 9.9% and 3.5%-16.8%, 

respectively, based on the ensemble mean of 10 

HighResMIP models. Higher increases (>10%) 

are expected during June to August and 

December. A statistically significant difference 

in mean flow at the 95% confidence level is 

observed at the annual scale and for specific 

months, including December–January, March, 

and June–October, mirroring the trends seen in 

projected monthly precipitation changes. In the 

next step, we analyze key indicators that define 

the magnitude of annual flow events over 

various durations, as outlined in the second 

group of Indicators of Hydrologic Alteration 

(IHA), listed in Table 1. As shown in Figure 6b, 

the 1-, 3-, 7-, 30-, and 90-day minimum and 

maximum flows are projected to increase 

significantly between 7.2–8.2% and 10.4–

28.4%, respectively, during the future period. 

Notably, high variability is observed in extreme 

peak flows (1-, 3-, and 7-day maxima), 

suggesting a potential increase in flood 

magnitude in the near future. Regarding 

baseflow conditions, a slight decrease of 0.9% 

is projected for the future period. This suggests 

that groundwater contributions to streamflow 

may remain relatively stable compared to 

current levels, ensuring a similar freshwater 

supply capacity. However, if water demand 

rises due to future population growth, increased 

pressure on water resources could lead to 

potential water stress. The models project an 

increase in the magnitude of high-flow events, 

ranging from 1.0% to 25.3% (equivalent to 1.87 

to 46.27 m³/s) for minimum flows and from 

0.4% to 16.2% (0.73 to 29.67 m³/s) for 

maximum flows. This suggests that future 
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extreme flow events are likely to be delayed by 

several days to weeks compared to historical 

patterns. The fourth group of the Indicators of 

Hydrologic Alteration (IHA) captures the 

frequency and duration of extreme 

hydrological pulses. Results indicate no 

significant change in the number of low-flow 

pulses. However, a notable 22.7% increase in 

the number of high-flow pulses is projected. 

The duration of both low- and high-flow pulses 

is expected to change slightly, with ensemble 

mean changes of 3.3% and 5.9%, respectively. 

The final IHA group evaluates the rate and 

frequency of flow condition transitions. A 

substantial increase of 31.9% in the rise rate 

and 25.5% in the fall rate is projected at the 

Pirdan station, indicating that rapid increases or 

decreases in streamflow are more likely in the 

future. Additionally, the number of 

hydrological reversals—daily flow shifts from 

increasing to decreasing, or vice versa —is 

projected to rise by 11.6%. This implies a 

greater frequency of abrupt flow fluctuations 

under future climate conditions. 

 
Figure 6. Projected changes in hydrological extremes represented by 32 IHA parameters of (a) monthly flows, (b) 

amount and duration, (c) timing, (d) frequency and duration, and (e) rate and frequency between the 1990s. -2014 is 

shown. and 2021–2050 at Pirdan station of Sarbaz river 

 

3.4 Environmental Flow Condition (EFC) 

Changes 

In this study, Environmental Flow Components 

(EFCs) were categorized into monthly low 

flows, extremely low flows, high-flow pulses, 

small floods, and large floods, given their 

critical importance in maintaining the 

ecological integrity of river systems. The first 

EFC group represents monthly groundwater-

dependent low flows; therefore, any changes in 

these parameters may reflect shifts in 

groundwater availability. Overall, a slight 

decrease in monthly low flows is projected for 

April, May, and October through December, 

ranging from 0.2% to 1.1%, based on 

ensemble-mean projections, as shown in Figure 

7. In contrast, monthly low flows during July to 

September are expected to increase 

significantly by 4.3% to 9.4% at the 95% 

confidence level. The projected changes in 

EFCs could have significant ecological 

implications, including impacts on aquatic 

habitats, fish migration, and riparian 

vegetation. For instance, reductions in low 

flows during dry months may threaten the 
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survival of species dependent on stable flow 

conditions, while increases in flood pulses 

could lead to habitat disturbance and erosion. 

Understanding these changes is crucial for 

developing sustainable water management 

plans that prioritize ecological flows and 

preserve riverine ecosystem health under future 

climate scenarios. 
 

3.5. Discussion 

Climate change is expected to exert a more 

significant influence on hydrological extremes 

compared to environmental flow components, 

as evidenced by a greater number of 

statistically substantial Indicators of 

Hydrologic Alteration (IHA) during the 2021–

2050 period (Figure 6), in comparison to the 

Environmental Flow Components (EFC) 

indicators (Figure 7). Identifying and 

understanding projected shifts in EFCs is vital 

for developing adaptive water management 

policies that balance ecological sustainability 

with human water demands. For instance, 

maintaining minimum flow levels during dry 

seasons is crucial for aquatic biodiversity, and 

alterations in flood pulse timing and magnitude 

may influence sediment transport and habitat 

connectivity. The statistical evaluation 

demonstrated that the SWAT model provided 

acceptable performance in simulating monthly 

streamflow. Changes in low flows and flood 

pulses directly influence the ecological health 

of riverine habitats. For example, reductions in 

groundwater-dependent low flows in certain 

months may degrade habitat for species that 

rely on stable flow conditions. At the same 

time, increases in high-flow pulses could erode 

spawning grounds and disrupt spawning. These 

shifts in EFCs are critical for understanding 

future hydrological resilience and conservation 

needs. One possible explanation for this 

reasonable performance could be the limited 

spatial density of rain gauges in the region, 

which may hinder the accurate representation 

of intense daily precipitation events at finer 

spatial resolutions [Bador et al., 2020]. 

Moreover, previous studies have indicated that 

the SWAT model tends to underestimate peak 

flows in various regions, including river basins 

in Spain [Jimeno-Sáez et al., 2018], Brazil 

[Pereira et al., 2016], and Hawaii [Leta et al., 

2016]. However, according to Crişan and 

Arnold [68], further research is required to 

evaluate whether model improvements can 

effectively address these limitations. 

Therefore, incorporating detailed analysis of 

these ecological flow components into future 

environmental and hydrological assessments is 

essential for comprehensive ecosystem 

management. 

Climate projections are consistently regarded 

as one of the primary sources of uncertainty in 

hydroclimatic impact modeling [Kundzewicz 

et al., 2018]. Given that high-resolution (HR) 

models have been shown to better capture the 

characteristics of extreme precipitation events 

compared to their low-resolution (LR) 

counterparts [Liang et al., 2021], it can be 

expected that HR models provide more 

accurate assessments of future precipitation 

extremes. Among the models evaluated in this 

study, projected changes in future precipitation 

intensity differ significantly between HR and 

LR models. The average precipitation change 

during the January–December period is notably 

higher with HR models, with a peak increase of 

9.6% compared to 5.0% with LR models 

(Figure 5). Similarly, the projected changes in 

monthly streamflow are significantly greater 

during the November–January period, reaching 

11.8% for HR models compared to only 3.2% 

for LR models. Moreover, the magnitude and 

duration of maximum 1-day to 90-day flows 

show larger increases in HR models than in LR 

models, with the most significant differences 

observed in 1-day peak flows—projected to 

increase by up to 35.1% in HR models versus 

12.8% in LR models (Figure 6). These results 

indicate that significant flood events under 

future climate scenarios are considerably more 

pronounced in HR model simulations than in 

LR models. For example, the frequency of 

large floods is projected to increase by 119% in 

HR models, compared to 44.4% in LR models 

(Figure 7). 
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This cross-comparison of simulations at 

different resolutions demonstrates that results 

from climate simulations with relatively coarse 

spatial resolution should be interpreted with 

caution. The relationship between model 

performance in simulating regional 

precipitation and its spatial resolution is 

complex. For instance, Liang et al. [2021] 

found that the high-resolution version of 

HadGEM3-GC3.1 showed a stronger ability to 

capture Borneo vortices during the Northeast 

Monsoon (NEM) season and their associated 

rainfall over Malaysia compared to its low-

resolution counterpart. This partly explains 

why high-resolution simulations such as MRI-

S and Had-HM reproduce the heavy rainfall 

periods (November and December) in the study 

area better than lower-resolution experiments, 

as shown in Figure 4a. We note that whether to 

use all available climate models or only those 

with superior performance in hydrological 

impact assessments remains a debated topic in 

optimal model selection [Kundzewicz et al., 

2018]. 

Enhancing the quality of input data for 

hydrological simulations is crucial in climate 

impact studies [Tan et al., 2014; Wang et al., 

2011], and is primarily based on statistical 

approaches. For instance, Tan et al. [2017] 

applied a linear scaling method to correct 

biases in CMIP5 GCMs before using them as 

inputs in SWAT modeling. In this study, a 

statistical bias correction approach based on 

Quantile Mapping (QM) is employed to adjust 

biases in HighResMIP model experiments. 

This method has also been widely used for bias 

correction of dynamically downscaled 

simulations from CORDEX-SEA experiments 

over Malaysia [Ngai et al., 2020] and Southeast 

Asia [Ngai et al., 2017]. Shrestha et al. [2017] 

suggested that there may be no significant 

difference between simple (e.g., linear scaling) 

and more complex (e.g., QM) bias correction 

methods in monthly streamflow modeling. 

However, Luo et al. [2018] compared seven 

bias correction techniques using precipitation 

and temperature data from the Kaidu River 

basin in China and reported that the impact of 

the different correction schemes was more 

pronounced on rainfall than on temperature. 

Further research is needed to investigate how 

the choice of bias correction method affects 

GCM-based projections, and how Regional 

Climate Models (RCMs) influence daily 

streamflow simulations in the studied region 

and surrounding maritime continent areas. 
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Figure 7. Projected changes in hydrological extremes represented by 32 EFC parameters (a) monthly low flow, (b) 

extreme low flow, (c) high flow pulses, (d) small floods and (e) large floods between Years 1990 to 2018 and 2021-

2050 in Pirdan station of Sarbaz River 

 

4. Conclusions 

Extreme hydro-climatic events have 

significant impacts on both the environment 

and human society. This study integrates the 

latest high-resolution Global Climate Model 

(GCM) simulations from HighResMIP with 

the SWAT hydrological model to project 

potential future changes in hydrological 

extremes over the Kelantan River Basin 

(KRB). The SUFI-2 algorithm was applied for 

sensitivity analysis, calibration, and validation 

of the SWAT model, aiming to enhance its 

reliability in simulating long-term daily 

streamflow. During this process, 

ALPHA_BF, CN2, and CH_K2 were 

identified as the most sensitive parameters in 

SWAT calibration, consistent with previous 

studies [Tan et al., 2020]. The raw outputs of 

HighResMIP experiments tend to 

underestimate monthly precipitation during 

November and December. Additionally, the 

models simulate an earlier peak in monthly 

rainfall (approximately one month earlier) 

compared to observations. Most HighResMIP 

experiments underestimate monthly 

maximum temperatures and overestimate 

minimum temperatures relative to 

observations. Based on bias-corrected climate 

projections using the Quantile Mapping (QM) 

method, annual precipitation is projected to 

increase significantly by 6.9%. At the same 

time, maximum and minimum temperatures 

are expected to rise by 0.8 °C and 0.9 °C, 

respectively, during the 2021–2050 period 

compared to the baseline period (1990–2014). 

Monthly precipitation is projected to increase 

across nearly all months, ranging between 

0.9% and 15.1%, except for March, which 

shows a slight decrease of 2.4%. Monthly 

maximum and minimum temperatures are 

also projected to rise by 0.7–1.0 °C. 

Future simulations indicate a 9.9% increase in 

annual mean streamflow during the 2021–

2050 period compared to the baseline period 

of 1990–2018. Concurrently, monthly 

streamflow is projected to rise by 3.5% to 

16.8% across all months, with statistically 

significant changes observed. The magnitudes 
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of the 1-, 3-, 7-, 30-, and 90-day minimum and 

maximum flows are expected to increase 

notably, reaching up to 28.4%. In contrast, the 

baseflow index is projected to experience only 

minor changes, with a slight decrease of 

approximately 0.9%. The timing of extreme 

flow events is expected to shift, with delays of 

several days to weeks in their occurrence. The 

duration of both low- and high-flow pulses is 

anticipated to show only minor variations 

compared to the baseline period. However, the 

rise and fall rates of streamflow are projected 

to increase, indicating a higher likelihood of 

rapid increases or decreases in flow under 

future climate conditions. 

For the 2021–2050 period, projections 

indicate a slight decrease in monthly low 

flows during April, May, October, November, 

and December compared to the baseline 

period of 1990–2018. In contrast, a significant 

increase in low flows ranging from 4.3% to 

9.4% is expected from July to September. 

Future simulations also project reductions of 

15.7% and 16.5% in the duration and 

frequency of extremely low flows, 

respectively. Regarding high-flow pulses, 

future projections show an increase of 1.8% to 

18.6% compared to the baseline period. 

Overall, both small and large flood indices are 

projected to increase in the future. However, 

only the changes in the duration of minor 

floods and the frequency of large floods are 

statistically significant. 

This study establishes a framework for the 

comprehensive assessment of hydro-climatic 

extremes by integrating hydrological 

modeling with high-resolution climate 

simulations. Further research is needed to 

better understand the SWAT model's limited 

ability to capture both peak and low flows. As 

more CMIP6 GCM simulations at varying 

model resolutions become publicly available, 

a comprehensive investigation into how 

horizontal and vertical resolutions of GCMs 

influence SWAT simulations will be 

conducted in the near future. Ultimately, this 

study demonstrates that both high- and low-

resolution climate models yield substantially 

different projections of future hydroclimatic 

extremes. Therefore, a quantitative climate 

forecasting framework combined with 

ensemble-based techniques should be 

developed to minimize uncertainties in 

extreme event simulations. 

One notable limitation of this study is the 

mismatch in temporal resolution between the 

SWAT hydrological model calibration and the 

Indicators of Hydrologic Alteration (IHA) 

used to assess flow regime changes. The 

SWAT model was calibrated using monthly 

observed streamflow data, whereas several 

IHA indicators—particularly those related to 

extreme flows (e.g., 1-day, 3-day, and 7-day 

minimum and maximum flows)—require 

daily time-step data for accurate 

representation. This discrepancy may affect 

the precision of the IHA-based assessment, 

especially for short-term hydrological events. 

While monthly-scale calibration ensures 

reasonable accuracy in capturing long-term 

trends and seasonal variations, it may not fully 

capture the dynamics of short-duration high- 

and low-flow events, which are critical for 

ecological and environmental flow 

assessments. Although daily simulated flow 

data were extracted from the model for IHA 

calculations, the lack of daily calibration 

limits the confidence in these results. 

Therefore, future studies should aim to 

calibrate the SWAT model at a daily time step 

using high-resolution observed flow data to 

improve the reliability of IHA-based analyses. 

In the absence of such data, caution is advised 

when interpreting the ecological implications 

derived from IHA indicators in this study. 
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