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The rapid development of industries and the establishment of numerous
industrial parks have initiated several environmental issues in recent decades.
The environmental standards and rules issued by the environmental
organization for increasing the quality of treated wastewater on the one hand
and increasing the energy price on the other hand have caused the energy
management debate to be of particular importance. The main aim of energy
management is to minimize the high energy consumption in industrial
wastewater treatment plants (IWWTP). In this paper, the electric power
consumption of the IWWTP in Amol’s industrial park (AIP) was measured by
implementing both traditional and advanced methods (using artificial neural
networks). In the first step, total energy consumption, involving energy used
by flow or aeration pumps and mixers, was calculated through an energy
activity diagram, mathematical equations, and mass balances. In addition,
linear regression equations for electrical energy consumption were estimated
based on the amount of oxygen needed with an appropriate correlation
coefficient. In the next step, a three-layer artificial neural network (ANN) with
the Leonberg-Marquard training algorithm was employed. Various parameters,
including chemical oxygen demand (COD), biological oxygen demand (BOD),
total phosphorus, total nitrogen, mixed liquor suspended solids (MLSS), and
the flow rate (Q) were employed in four models to predict the electrical energy
consumption of the IWWTP. Results showed that COD, MLSS, and Q can be
considered as the most important selective indices for the determination of
energy consumption by which the highest correlation coefficient and the lowest
error rate of 0.928 and 0.0098 were obtained, respectively.

1. Introduction

established in industrial parks around cities
(Chae KyuJung and Kang JiHoon, 2013). To

With the advancement of industries in recent
decades, industrial parks either have been
constructed or are under construction around
cities. According to the law, commercial
units that produce pollution should be
separated from the urban areas and be

protect the environment, all industrial parks
are required to treat their wastewater, and
after reducing the physical, chemical, and
biological pollution to environmentally
acceptable levels, they would be allowed to
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enter their wastewater into the environment
(Saghafi et al., 2016). Industrial wastewater
contains organic matter and toxic pollutants
(Munter, 2003a, 2003b), Therefore, the
wastewater treatment systems of industrial
parks should have required efficiency so that
their effluent does not damage the
environment (Halkos and Tzeremes, 2012).
In the wastewater industry, the public
attention is more focused on the standard
quality of effluent and there is little
management of energy consumption
(Metcalf et al., 1991). At first glance, it does
not seem necessary to reduce energy
consumption in the water and wastewater
system, but when the annual energy cost and
significant placement of energy equipment in
the water and wastewater system are taken
into account, it can be concluded that saving
energy in the water and wastewater treatment
systems is an absolute necessity (Campello et
al., 2021). The reduction of energy sources
and the rise of energy prices in the world,
especially in under-developing countries, as
well as environmental problems, such as
global warming and rising temperatures, air
changes and drought intensification, etc
(Gikas, 2017), caused by the high
consumption of fossil fuels, have made
energy management in the sewage industry to
become severely important (Nabavi-
Pelesaraei et al., 2017). Considering the
economic developments and the increase in
the price of energy, there have been many
changes in water consumption, quantity, and
the quality of sewage produced by factories
(Omer, 2008). Most wastewater treatment
systems use electrical energy, therefore, 25 to
40 percent of the total cost of the wastewater
treatment process in a wastewater treatment
plant is spent on the energy sector (Saghafi et
al., 2020). This has led designers of the new
wastewater treatment methods to focus on
reducing energy consumption (Zhang et al.,
2012).

The first step in energy consumption
management is to determine the amount of
energy used and the factors and parameters

affecting it (Sonesson et al., 2000).
Traditional or intelligent software can be
used to determine energy consumption in a
treatment plant (Saghafi et al., 2015). In
traditional methods, the total energy
consumption of a treatment plant, including
the energy used by pumps, mixers, and
aeration, is calculated by mathematical
equations and mass balance (Saghafi et al.,
2016). Determination of the total electrical
energy consumed by the wastewater
treatment plant in a traditional way is very
complex and time-consuming. Linear
equations cannot  efficiently  estimate
electrical energy due to the dynamic behavior
of the treatment plant and the interaction of
factors  affecting  electrical energy
consumption (Saghafi et al., 2018).
Therefore, implementing a quick and
practical approach like an ANN can be very
useful in modeling the electrical energy
consumed by plants since, in addition to
needing less time, it is more accurate
(Saghafi et al., 2019). ANNs are non-linear
computing systems that mimic the natural
neural processes (Sarkar et al., 2009). Like
the human brain, the ANNSs consist of nodes
and communications, which makes ANNSs a
creative and promising solution to the
problem of the relevance of output variables
to their input into complex systems (Dawson
and Wilby, 2001). Neural network
technology is mostly employed for prediction
(Dawson and Wilby, 2001). Multilayer
perceptron (MLP) neural networks are one
the most practical methods in ANN (Fischer,
2006).

Various algorithms can be used in ANN to
achieve the best result from the given input.
The network will be trained by these
algorithms to generate the desired output. In
each algorithm, different correlations and
hidden patterns will be applied to the given
data to classify and cluster the raw data. The
standard backpropagation algorithm
(BPNN), conjugate gradient (CG), and
Levenberg—Marquardt algorithm are some
examples of the most well-known algorithms
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for training procedures (Falah Nezhad et al.,
2016; Fischer, 2006). The standard
backpropagation algorithm  works by
adjusting the weights in the steepest descent
direction in which the performance function
is decreasing most rapidly. In the CG
algorithms, a search is performed along
conjugate directions to achieve a faster
convergence than the steepest descent
directions.  The  Levenberg—Marquardt
algorithm is also a training algorithm that is
designed to approach second-order training
speed without having to compute the Hessian
matrix. Among these algorithms, BPNN is
the most popular network, especially in the
case  of  non-linear  approximation
(Kashaninejad et al., 2009). Each BPNN
consists of an input layer, an output layer, and
one or more hidden layers. It works backward
from the output layer to adjust the weights
accordingly and reduce the average error
across all layers. This process is repeated
until the weights reach their optimal values
and the error between the output of the
network and the desired output is minimized
(Aydiner et al., 2005). The main task in
designing a BPNN network is to find the
appropriate number of layers and also the
number of neurons in each layer in a way that
the overall network error minimizes.

ANN is commonly used as a very useful tool
in a wide range of topics and areas of great
complexity (Boger, 1992; Falah Nezhad et
al., 2016; Maier and Dandy, 2000). It has also
been widely used in environmental issues
such as predicting the river flow model
(Teschl and Randeu, 2006), prediction of
wastewater effluent quality in treatment
plants (Khalil et al., 2011), assessing the
performance of IWWTP, and predicting and
locating appropriate landfill sites (Ali Abdoli
et al.,, 2012). However, according to our
knowledge, no study has been carried out on
the prediction of energy consumption in
wastewater treatment plants using ANN so
far. Considering the importance and the
necessity of energy management, the amount
of electrical energy consumption in IWWTPs

was modeled in this study. Since the first step
in energy consumption management.

is prediction, energy consumption was
investigated by employing a traditional
method using an activity diagram as well as a
neural network. To determine the energy
consumption traditionally, the electric power
consumption in pumps, mixers, and electric
motors was determined separately. Also, the
electrical energy consumed in the aeration
section was calculated by implementing mass
equations. After that, various models of a
three-layer neural network were developed to
predict the electrical energy consumption of
the wastewater treatment plant of Amol’s
industrial park. First, 6 input variables were
selected, including COD removal, BOD
removal, nitrogen removal rate, phosphorus
removal rate, inlet flow, and MLSS, and then
further models were also considered to assess
the sensitivity of the models and the impact
of input parameters.

2. Materials and Methods
2.1. Data Collection

The wastewater treatment plant of AIP works
using a hybrid filtration method, which
includes an upflow anaerobic packed
bioreactor (UAPB) as an anaerobic treatment
and the integrated fixed-bed activated sludge
(IFAS) as an aerobic treatment process. The
main components of this treatment plant
include a screening unit, grit removal unit,
scum removal, equalization tank, UAFB
tank, aeration tank, sedimentation tank,
disinfection tank, and sludge digestion. The
seven active industrial groups involved in the
AIP included metal industries, chemical and
rubber industries, non-metallic mineral
industries,  electrical and  electronic
industries, wood and paper industries, food
and beverage industries, and textile and
clothing industries (Campello et al., 2021). In
total, there were 194 utilized units on the site.
Table 1 illustrates the electrical equipment
employed in the wastewater treatment plant
at AIP.
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Table 1. The existing electrical equipment used in the IWWTP of Amol

Unit  Description Number of Equipment Number of Power Working
units equipment (kW) Time
(h.day™)
1 Bar screen 1 Pump 1 0.55 24
2 Equalization tank 1 Pump 3 3.6 12
Mixer 1 0.8 14
3 Aeration tank 4 Blower 4 22 12
4 Disinfectant 1 Dosing pump 1 0.031 12
system Mixer 3 0.18 8
5 Sludge 1 Pump 2 2.2 16
thickening
6 Sludge digestion 1 Pump 1 2.2 16
7 Sludge Storage 1 Mixer 1 0.4 12
8 Filter Press 1 Compressor 2 8 12

2.2.  Determination of electrical energy
in IWWTP

2.2.1. Traditional method

Determination of the consumed electrical
energy in the traditional manner was carried
out via the energy efficiency diagram in the
wastewater treatment plant. The dynamic
behavior diagram (shown in Fig. 1) illustrates
the consumption of electrical energy in the
wastewater treatment plant of AIP. The major
consumers of electrical energy in the
wastewater treatment plant are pumps and
mixers, especially in the aeration process.
The electricity consumption of treatment
plant equipment, such as pumps and mixers,
was calculated through mathematical
equations. For example, in order to obtain the
amount of energy consumed in the aeration
process, first, the Kkinetic coefficients of
biological growth in the aeration tank were
found, and then by establishing the
relationship between biological activity,
nutrient intakes, and the amount of oxygen
demand, electrical energy consumption was
determined as the linear regression.

In the given flowchart, En is the electrical
energy consumed in mixers calculated by

Equations 1.
g o PxT
moQ @)

where En is the electrical energy in kWh.m,
P is the electrical power of the pump or
motors in kW, T is the duration of using the
pump or motor in h.day?, and Q is the total

amount of influent wastewater (m?3.day
1(Singh et al., 2009) (Singh et al., 2012).

Ep also represents the electrical energy
consumed in pumps, calculated by Equations
2.

E, =E, = Zn:Ei )

i=1
Where E; is the energy of each pump
calculated using Equations 3 and 4.

E; = TQAP ©)
Ap = pg(0.001 * *#2d30% Lyine + AZ) (4)
Where n is the number of pumps, n is the
pump efficiency, Q is the sewage flow
(m3.day?), and Ap is the pressure drop in
meters (calculated by Equation 4). In
equation 4, AZ is the difference between the
inlet and outlet head (m), Lpipe is the length of
the pipe (M), dpipe is the pipe diameter (m),

and m is the mass flow.

0, is the amount of oxygen needed for food
intake corresponding to the carbon source
(kg/day) can be calculated through equations
5 and 6.

Where S. is the inlet COD (mg/L), S is the

COD of outlet flow from the aeration tank
(mg/L), and Y is the efficiency coefficient.
0, = Q(S- —S) — 1.42m (5)

m = YQ(S. — S) (6)
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Figure 1. Energy activity diagram in an industrial wastewater treatment plant.

2.2.2. Developing ANNs model

A data set from AIP has been utilized to
develop the ANN model. Six parameters,
including BOD, COD, total nitrogen (TN),
total phosphorus (TP), MLSS, and Q, were
measured on a daily basis for four months. To
ensure the quality and accuracy of the data,
an outlier detection test was conducted on the
tabulated data to eliminate potential
erroneous or inconsistent inputs. This process

ensured that the data used for the ANN model
were error-free. These refined data were then
implemented in the ANN model. Values of
some descriptive statistics for these variables
are shown in Table 2. The most important
variables were defined through 1 to 4 models.
Eventually, the best number of variables and
the best model have been identified and
involved in the simulation.

Table 2. Data for Amol IWWTP

Variable BOD (mg.LY) COD(mg.L?') TN (mgL?') TP (mgL?') MLSS(mg.L?') Q(miday?)
Minimum 1073 1459 9 3.3 1800 1000
Maximum 3079 4620 195 10.9 3800 1302
Average 1973 2786 13 7.7 2466 1122

In the process of developing the ANN model,
the first step involves determining the
number of neurons in the different layers.
The input layer consists of six neurons, each
corresponding to one of the key input
parameters (BOD, COD, total nitrogen, total
phosphorus, MLSS, and Q). These

parameters were selected based on actual
collected data and play a crucial role in
predicting the model's performance.

The hidden layer, which is the most critical
component for learning and generalizing the
model, requires careful selection of the
number of neurons to optimize the model for
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achieving the best performance and accuracy
in predicting research outcomes. Hidden
layers enable the network to generalize.
Hypothetically, any continuous function can
be simulated by a network with a hidden layer
and an adequate number of hidden neurons,
leading to a rich and flexible class of
universal approximators (Dawson and Wilby,
2001; Fischer, 2006). The activation function
employed in this layer plays a significant role
in  enhancing the model’s learning
capabilities and preventing issues such as
network saturation, which directly impacts
the quality of predictions. The output layer of
the network consists of a single neuron that
produces the predicted value for electrical
energy consumption (EEC). A linear
activation function is used in this layer to
establish a direct relationship between the
input parameters and the output, allowing for
precise predictions of the final result. The
second stage involved determining the
learning rate, training algorithm, number of
iterations, and training-stopping criteria. The
number of epochs refers to the frequency
with which the training data is presented to
the network, helping the network learn from
the patterns within the data. On the other
hand, the training stopping criteria define the
conditions under which training ceases, such
as a lack of improvement in the model's
performance over a specified period. These
settings are key factors in preventing
overfitting and optimizing the model’s
performance. In this study, a multi-layer
perceptron network was generated according
to the number of data and the structure of
network layers.

Determination of the number of hidden
neurons is of great importance, this can
usually be achieved by a trial and error task
in ANN modeling (Ozesmi et al., 2006;
Palani et al., 2008). It has been suggested by
the Alyud research company (2003) that the
N should be in the range of 1/2 to 41, where
the I is the number of inputs.

In this paper, we assessed a range of neurons
from 4 to 17. The partitioning scheme 70%-

15%-15% was the optimum associated one
(i.e., the proportions of the samples allocated
to the training, cross-validation, and testing
sets were 70%, 15%, and 15%, respectively).

2.3. Theoretical equations

To evaluate the performance of the ANN
model, correlation coefficient (R), and root
mean square error (RMSE) were assessed,
and the accuracy of the model was
determined according to these criteria (Ali
Abdoli et al., 2012). The root mean squared
error (RMSE) can be defined as shown in
Equation 7;

N
1
RMSE = NZ(% actual — Yi predicted)z (7)
Where the output of the process is y; gctuats
Yipredictea 1S the i output of the network
corresponding to the y; sctuar @Nd N is the
total number of data points.

3. Results and Discussion

3.1. Calculation of electric energy
consumed in the treatment plant in the
traditional way

The highest amount of electric energy
consumed in the treatment plants is spent on
pumping, mixing, and aeration, based on the
energy efficiency diagram in the wastewater
treatment plants in AIP (Figure 1). The
electrical energy consumed in the pumps and
mixers of the plant is calculated using
Equations 1 and 2, and the obtained results
are illustrated in the following figures.
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Figure 2. Electricity consumption of pumps and
mixers

As shown in Fig. 2, the highest amount of
energy is consumed in the aeration tank
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which is equal to 5.63 (kWh.day-1.m-3). The
total amount of energy consumed by the
pumps and the mixers was 2.88 (kWh.day-
1.m-3). A large amount of this energy was
spent on sludge filtration and in the filter
press. The amount of energy consumed in the
filter press was 1.92 kWh.day-1.m-3. The
energy used in the aeration section is
presented separately in the energy activity
diagram and indicated by Eo (the electric
energy consumption). To achieve this, the
biological activity and substrate/food
changes in the aeration tank were
investigated and analyzed. The results are
illustrated in Fig. 3.
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Figure 3-a. MLSS changes relative to time, b; the rate of biological growth in the aeration tank, ¢; biomass changes
in relation to food changes
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The amount of MLSS in the aeration tank was
equal to the mass of living organisms
(biomass). According to Figure 3-a, the fitted
linear regression equation showing MLSS
changes over time is as shown below.

MLSS = 58.02t + 1074 9)

The coefficient R? for the fitted linear
regression equation is 0.98, which indicates
the accuracy of the estimated equation. In
addition, according to Figure 3-b, the
biological growth rate is not the same at
different concentrations of nutrients and the
highest biological growth rate occurs at
concentrations of 3000 to 6000 mg/L. The
specific biological growth rate pmax is 0.0489
and the Ks is equal to 3108 mg/L as well.
Finally, in Fig. 3-C, the changes of biomass
production in the aeration with respect to the
substrate changes are shown and the linear
regression equation is presented, which is
shown through Equation 10.

dx = 0.204ds + 92.85 (10)

The mean efficiency coefficient (Y) in the
aeration tank is illustrated by the fitted line
slope. The mean value of Y is equal to 0.204.
It is noteworthy that the R-value in the
equation is a bit low but still in an acceptable
range (approximately 0.8). The accuracy can
be further increased by increasing the input
data.

At this stage, with obtaining the amount of Y
and having the amount of COD removal and
the inlet flow, the amount of oxygen required
for aeration was obtained through Equations
5 and 6. The results are shown in Figure 4.
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Figure 4. The amount of oxygen needed to consume
carbon food

As shown in Figure 4, the amount of required
oxygen in relation to COD removal had an
upward trend so the amount of required
oxygen increased with an increase in COD
removal. The maximum amount of required
oxygen has been 1614 (kg/day), which is
used to remove 1365 mg/L of COD. Finally,
by obtaining the required oxygen and having
the consumed electrical energy, the linear
regression equation was concluded to
determine the amount of consumed electrical
energy. In Figure 5, the amount of electrical
energy consumed per oxygen requirement is
illustrated.
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Figure 5. The amount of consumed electrical energy
per required oxygen

The amount of electrical energy is fitted as a
linear regression equation. The R-value in the
equation is in an acceptable range and is
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approximately 0.8. The fitted linear equation
is presented below.
Eo = 0.4180, + 1041 (11)
Where O, is the amount of required oxygen
to remove carbon (kg/day) and Eo is the
electric energy consumption (wh). Therefore,
with the help of the obtained equations, the
required electrical energy (wh) can be
obtained by having the amount of required
oxygen. The electrical energy consumed in
the aeration unit of treatment plants through
energy consumption in aeration compressors
was carried out by (Descoins et al., 2012)
which is comparable to the results of the
present study.

3.2.1. Developing ANN model

The main steps in developing ANN models
are determining the appropriate input model,

12500

determining the type of network, partitioning
and pre-processing the data, determining the
network architecture;  defining  the
performance criteria of the model, training,
and validating the model (Falah Nezhad et
al.,, 2016). hence, four neural network
models, with different numbers of input
parameters and neuron models were used to
predict the electrical energy consumed by the
treatment plant. Model 1 includes 6 variables,
including BOD, COD, TN, TP, Q, MLSS,
and 13 neurons in the intermediate layer. The
amount of R and RMSE obtained in this
model were accounted for 0.936 and 0.0068,
respectively. Therefore, this model can be
considered a suitable model for predicting
electrical energy consumption. In Fig. 6, the
results of actual values and values that were
predicted by the neural network in Model 1,
are illustrated. The actual values have been
taken from the electricity bills of AIP.
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Figure 6. Real and predicted by model 1 electrical energy consumption.

The actual values of electrical energy
consumed in the selected treatment plant
have changed from 9876 to 12088 Wh, while
the values predicted by model 1 vary from
9404 to 12215 Wh. The comparison between
the obtained results shows both groups of
data are in a close range. In addition, due to
the high R-value and low RMSE in model 1,

it can be concluded that this model has
sufficient reliability to predict the amount of
electrical energy consumption.

3.2.2. Sensitivity analysis

To assess the sensitivity of input parameters
to the model, network error with all
parameters was calculated. Then, some of the



Saghafi et al., 2025 / Journal of Hydraulic and Water Engineering (JHWE), Vol. 2, No. 1, 111-124. 120

input parameters were eliminated to calculate
the ratio of obtained error to the total error of
the model. The higher ratio was equivalent to
the more importance of the eliminated
parameter and hence, we could consider the
parameter in a higher rank compared to

others. When the error ratio is less than one it
shows the given parameter is not remarkably
effective and could be eliminated from the
model. The sensitivity results of input
parameters in models 1 to 4 are shown in
Table 3.

Table 3. Neural network models

Model Variables neurons Ratio
1 BOD, COD, TN, TP, Q, MLSS 13 1
2 COD, TN, TP, Q, MLSS 13 1.28
3 COD, TN, TP, Q 13 3.1
4 COD, MLSS, Q 11 1.46

As shown in Table 3, in Model 1, six input
variables were considered, including COD
removal rate, BOD removal rate, nitrogen
removal rate, phosphorus removal rate, inlet
flow, and MLSS. The best result was
obtained in the case with 6 input variables
and 13 neurons in the intermediate layer, in
which R and RMSE were equal to 0.936 and
0.68%.

In Model 2, the number of variables was
reduced to 5, and one of the input variables
(BOD) was eliminated. The results revealed
that R and RMSE values in this model, which
contains 13 neurons in the intermediate layer,
accounted for 0.935 and 0.87%, respectively.
It showed that the elimination of the BOD
parameter had no significant effect on the
results, and energy consumption was still
accurately predicted which was due to the
dependence of the COD and BOD parameters
on each other. However, it should be noted
that model 2 with five variables will be more
efficient than model 1 with 6 input variables
due to the lower number of variables.

In the next model (Model 3), the number of
variables was reduced to 4, and the input
variables included COD removal, nitrogen
removal, phosphorus removal, and Q. The
best result in this model was obtained when 4
input variables and 13 intermediate layers
were employed. Measured R and RMSE for
this mode were equal to 0.902 and 2.1%,
respectively, and this model could not meet a
high accuracy. Hence, it can be concluded

that MLSS is an effective variable in the
prediction of energy. This is because, with
the elimination of this variable from input
variables, the value of R dropped, therefore,
this 4-variable model for prediction of
electrical energy consumption in a treatment
plant is not recommended.

In model 4, three input variables were
considered. Since the previous models had
shown that COD and MLSS parameters have
a great influence on the determination of the
electrical energy of the IWWTP, the nitrogen
removal and the phosphorus removal
parameters were eliminated in this model.
The best result in this model was obtained
with 11 neurons in the intermediate layer, in
which R and RMSE were equal to 0.928 and
0.98%, respectively. The results revealed that
model 4 has high accuracy in the prediction
of energy consumption. In addition, it can be
seen that the results of models with three and
six input variables (containing nutrient
removal) do not differ significantly, because
the parameters of nitrogen and phosphorus
removal, did not have a significant impact on
the final results, mainly due to their exiguity
and the low changes of range. Also, the
dependence between the COD and BOD
variables causes that removing one of them
does not have a significant impact on the final
result. Furthermore, when the number of
input variables has changed from 6 to 3, the
number of intermediate neurons has changed
from 13 to 11 for the optimal answer because
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the number of neurons is directly related to
the input variables.

Taking all the results, it can be concluded that
parameters, such as COD, MLSS, and Q were
of great importance compared to other
available parameters and can be considered
to be the fundamental required parameters to
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predict the amount of electrical energy. In
addition, model 4 is accurate enough to
predict the amount of electrical energy.
Figure 7 illustrates the actual and predicted

values obtained by the neural network via
model 4.
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Figure 7. Real and predicted electric energy consumption by Model 4

The actual values of electrical energy
consumption in the selected treatment plant
changed from 9876 to 12088 Wh, and the
values predicted by model 4 vary from 9744
to 11904 Wh, which was in an appropriate
range.

In the study by Maged et al., ANN models
were developed to predict the performance of
a wastewater treatment plant. The data used
were collected from a major treatment plant
in Greater Cairo, Egypt. The dataset included
daily records of BOD and SS concentrations
across various stages of the treatment process
over a 10-month period. The results
demonstrated the high capability of ANN
models in accurately predicting the
performance of the treatment plant (Hamed et

al., 2004). In the study by Wang et al., which
includes two wastewater treatment plants
located in Chongging, China, artificial neural
networks ANNs were used to predict
electrical energy consumption in wastewater
treatment plants. The results showed that
these models were able to predict energy
consumption with high accuracy and help
optimize energy use in the treatment
processes (Wang et al., 2022). In our study,
the application of artificial neural networks to
predict electrical energy consumption in
IWWPT was also investigated. The results
indicated that these models provide high

accuracy and optimal performance in energy

prediction and can serve as an efficient tool
for energy management in treatment plants.
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4. Conclusions

Nowadays, due to the shortage of energy
resources, the rising cost of energy,
environmental problems, and problems
associated with high energy consumption,
such as global warming, energy consumption
management has been the subject of
significant attention. In this study, the energy
consumption of IWWTP was investigated by
employing a traditional method as well as a
neural network. According to the given
process, the determination of energy
consumption in the traditional method
demands a lot of time and energy to collect
and analyze information and it may be
affected by human/equipment errors. Hence,
finding an accurate and efficient method to
predict energy consumption is absolutely
necessary. The neural network provides a
very powerful tool for predicting the amount
of energy consumed in industrial wastewater
treatment plants. To model the energy
consumption in the neural network, model 1
with six input variables was first used, and
then further models were considered to assess
the sensitivity of the model and to determine
the impact of each of the selected input
parameters on the result. According to the
results of all neural network models, and
given the higher importance of some of the
input variable parameters, the optimal model
structure in predicting the electrical energy
consumption of the AIP was chosen which is
a neural network with three input variables,
including COD removal, MLSS, and inlet
flow, with 11 neurons in the intermediate
layer and the (Levenberg-Marquardt training
algorithm) LM training function.
Considering the impact of indicators on the
obtained results from each model, and the
fact that the best solution with the least
variable parameters would be the most
favorable design conditions in the neural
network, model 4 was chosen as the best
model, which indicates the high accuracy of
this neural network model in predicting the
electrical energy consumption rate by
IWWTP. Considering the promising results

of this study, future work could focus on
developing hybrid models combining neural
networks with optimization algorithms,
expanding input parameters for deeper
analysis, and implementing the model in
other industrial settings. Additionally, long-
term energy consumption  prediction,
economic and environmental  impact
assessment, and real-world operational
testing could further enhance the model's
applicability and efficiency.

List of abbreviations

Abbreviations Definition
AIP Amol’s industrial park
ANN Artificial Neural Network
BOD Biological Oxygen Demand
Back Propagation Neural
BPNN Network
COD Chemical Oxygen Demand
CG Conjugate Gradient
EEC Electrical Er}ergy
Consumption
MLP Multilayer Perceptron
Integrated Fixed Bed
IFAS Activated Sludge
Industrial Wastewater
IWWTP Treatment Plants
MLSS Mixer-mixed Ilquor
suspended solids
TN Total Nitrogen
TP Total Phosphorus
UAPB Upflow A_naeroblc Packed
Bioreactor
UAEB Upflow Anaerobic Fixed
Bed
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