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Method of Characteristics (MOC) has long been an excellent and widely
established technique for analyzing transient flow, especially in a single
pipeline with constant wave speed. But this method has some limitations in
terms of mesh sizing while studying multi-pipe systems or systems with
different wave speeds. More specifically, it needs all pipes to satisfy the
Courant number to be unity while the same time step should be chosen for all
pipes. With this, one reach in each pipe remains, which does not satisfy the
Courant requirement. As one possible remedy to this shortcoming, a hybrid
numerical method based on MOC and a two-step variant of the Lax-Friedrichs
method (MOC-LF) is suggested in the present study. This method is compared
against the conventional MOC scheme, which adapts interpolation for the
remaining length per pipe (MOC-MOC). In the approach, two significant
effects of fluid structure interaction (FSI) in fluid-filled tubes, namely Poisson
and junction coupling, are introduced. The computational simulations are
carried out for a reservoir-pipe-valve system with instantaneous and gradual
closure of the downstream valve. The results of proposed scheme and those of
MOC with interpolation are in good agreement with solutions obtained by
MOC with a very fine grid, which are taken as a reference. Detailed comparison
of the computational methods in terms of error indicates that the proposed
MOC-LF can be a good alternative for conventional MOC schemes.

1. Introduction

wave is formed, which travels back and forth

Hydraulic transients, also called water
hammer, are planned or unexpected changes in
water pipe systems, e.g. by opening or closing
a pump or valve. As a consequence, a pressure

* Corresponding author: faeze_khalighi@yahoo.com

in the pipeline. Pressure waves can generate
axial displacements and stresses in the pipe
walls due to Poisson coupling. In addition,
unbalanced forces at a valve or a bend result in
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the movement of pipes, known as junction
coupling (Hosseini et al., 2020).

Transient hydraulic analysis is essential in
designing and exploiting pressurized water
pipe systems to guarantee their security,
reliability, and good performance under
abnormal operational conditions (Ramos et al.,
2009). Numerical simulation has now become
the main approach for transient analysis
(Zhang et al., 2018). The essence of the water
hammer calculation is to solve a set of
hyperbolic partial differential equations. Many
methods have been developed for transient
analysis (for instance, El Idrissi et al. 2023; Lu
et al. 2024; Wan et al. 2023; Shi et al. 2023;
Zhang et al. 2023).

The method of Characteristics (MOC) is
currently one of the most popular techniques
due to its accuracy, simplicity, and ability to
include different boundary  conditions
(Greyvenstein, 2002; Laguna and Tsouvalas,
2014). It is widely used to simulate water
hammer complications in various engineering
practices such as fluid structure interaction
(FSI) (Ferras et al., 2018, Hosseini et al. 2020),
unsteady friction (Ferras et al., 2017,
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Urbanowicz, 2018), viscoelasticity (Keramat
et al.,, 2012; Henclik, 2018), and column
separation (Bergant et al., 2006; Ghodhbani et
al., 2019). Although the method is ideal for a
single pipeline with constant wave speed, the
requirement of strict adherence to the Courant
time step-reach length relationship becomes a
limitation for MOC in multi-pipe systems (Pal
et al., 2021). It needs all pipes to satisfy the
Courant number to be unity, and on the other
hand, a common time step should be chosen
throughout the time-domain computation.
Figure 1 shows a series pipe system consisting
of two pipes, pipe 1 (L1,c1) and pipe 2 (L2,c2).
The same computational time step is used for
two pipes. In the MOC approach, the unity of
the Courant number (equations shown in the
figure) should be satisfied. n1 and n; are the
number of reaches, and they should be integer.
As shown, the second pipe cannot meet the
introduced criterion. nz is not an integer, and
the gray area remains unsolved. In this figure,
there are only two pipes, and by playing with
the spatial step, it is possible to solve the
Courant number criterion, but a pipe network
usually consists of several pipes, and it is
impossible to satisfy this criterion for all pipes.

oAl ¢ Al
Cr=—"—=—"1_"=1lsn=—
AZJ Ll /M G
i ¢, At Al L,
Cr=—=———=1>n=—
Az, L,/n, c, At

——— remains unsolved.

At: time step
c:wave speed
n: number of reaches

Az: spatial step
L:pipe length

Figure 1. MOC limitation schematic.
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One possible remedy to this shortcoming is
using interpolation. Wiggert and Sundquist
(1997) suggested an interpolation algorithm by
coupling space-line interpolation and space
reach out interpolation. Lai (1988) presents a
method by the combination of different
interpolation methods, and called it the
multimode scheme. Shimada et al. (2006)
proposed analytical predictions of numerical
errors of both space-line and time-line
interpolation methods. Ghidaoui et al. (1998)
suggested an integrated-energy approach to
explore the origins of discretization errors
related to common space-line and time-line
interpolation methods and how these errors can
be managed. Interpolation is fundamentally
non-physical and leads to numerical errors in
the form of dissipation and dispersion (Pal et
al., 2021).

Another solution is to use wave-speed
adjustment. In the wave-speed adjustment
approach, one of the pipeline properties
(usually wave speed) is altered to meet the
Courant requirement (Twyman, 2016). While
adjusting the wave speed may seem
straightforward because it is non-dispersive,
requiring only a certain  percentage
modification to meet Cr = 1, it alters the
physical properties of the problem (Ghidaoui
and Karney, 1994; Twyman, 2016).

The next solution is that the water hammer is
analyzed using a hybrid scheme that solves the
transient flow by applying the MOC on those
pipes with a Courant number equal to 1 and
using another stable and accurate scheme on
the disproportionate part of the pipes. Samani
and Khayatzadeh (2002) coupled MOC and the
implicit finite difference method (IFDM) for
solving transient flow in pipe networks. The
obtained numerical results had good agreement
with the available exact analytical solutions for
many test examples. Twyman (2017) proposed
a hybrid numerical method based on MOC and
IFDM. He analyzed the transient flow in two
pipe networks; it is demonstrated that this
solution-type allows obtaining high accuracy
solution. However the IFDM implementation
has a certain level of complexity. Moreover, it

spends more computational memory and takes
longer to complete the execution simulation
time (Twyman, 2018).

As a conventional numerical method, the Lax-
Friedrichs (LF) method is widely used in
computational fluid dynamics (CFD). It is a
straightforward method for the solution of
hyperbolic partial differential equations
(PDEs). Its use is limited because its order of
accuracy is only one, but it is easy to program,
applicable to general PDEs, and has good
qualitative properties because it is monotone
(Thomas, 1995; Shampine, 2004). Khalighi et
al. (2016; 2017) reported the results of the two-
step variant of Lax-Friedrichs in water hammer
simulations. The LF method is confirmed as
reliable in axial FSI problems compared to the
exact solution of a system of four linear
hyperbolic equations in a reservoir-pipe-valve
system.

A hybrid numerical method based on MOC and
the two-step variant of Lax-Friedrichs (MOC-
LF) is proposed in the present study. A
frictionless reservoir-pipe-valve system with
both sudden and gradual valve-closure patterns
is taken as the test problem. In the
implementation, a single pipeline is divided
into two reaches. This system is chosen because
it describes a clear representation of the
solution for a simple series network. The results
are compared against the MOC with a very fine
grid to verify the accuracy and report on the
root mean squared deviation (RMSD) of the
studied schemes.

2. Materials and Methods
2.1. Governing equations

The pipe under consideration is horizontal,
thin-walled, linearly elastic, and filled with a
weakly compressible fluid. The radial inertia
and radial shear deformation of the pipe wall
are neglected. The other structural assumptions
are that there is no buckling and that the
deformations are small. The hydraulic
equations and structural equations without
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considering friction are (Tijsseling, 2003,
Keramat et al., 2012):

N gH _, A,

= _ =0 1
oz ¢’ ét oz @
oV oH
—+g—=0 2
i (2)
in which:

1 D s
¢, =(p (E+e_E(1_“z))) > ©)

where V=fluid velocity, H= fluid pressure head,
g=gravitational acceleration, cf = pressure wave
speed, v =Poisson’s ratio, E= Young's modulus
for pipe wall material, u, = axial pipe velocity,
D=inner pipe diameter, K = fluid bulk modulus,
p, = fluid density, and e = pipe wall thickness.

The governing equations for the axial motion of
the pipe are similar to Egs. (1), (2), and (3):

au, 1 Oo,

U,

L 2o D AH @
oz pc° ot 2 eE ot
o, 10

z = O-z =O (5)
ot p oz
in which:
¢ =Elp, (6)

where o, =axial pipe stress, p, =density of pipe
wall material, and ci=axial stress wave speed.

The governing equations can be written in the
following form:

Aa—y+BQ=O (7)

ot 0z

where y is the vector of unknowns, and A and
B are matrices of constant coefficients:

y= ) (8)

1 0 0 0
o L o o
A= ‘
0 0 1 0 |
vD -1
0 P9 0 :
| 2E A
1 g O 0
00 2v 0
B=
00 1 -1/p
00 -1 0

2.2. Solution procedures

This section presents the details of the
numerical approaches. For a system of two or
more pipes, the same computational time step
is used for all elements. In MOC, as already
mentioned, the Courant number is 1, so the
following equation should be satisfied:

cAt  CAL
Cr=—= =1->

Az, Lj/nj

] ©
n, =—2 j=1..,N

C.At

|

where Lj=length of pipe j, cj=wave speed in
pipe j, At = time step, nj=number of reaches in
pipe j, and N=number of pipes in the system. It
is evident that many of the pipes will not satisfy
the criteria introduced by Eq. (9) because n;
must be an integer. As a remedy, each pipe
separates into two parts: one with proportionate
elements and another having a disproportionate
section. The proportionate reaches satisfy the
Courant number (unity) with the same time step
for all pipes. MOC and LF solve the governing
equations in proportionate and disproportionate
elements in the MOC-LF method, respectively.
The location of the disproportionate reaches
falls at the end of the pipe. The flow chart of
the MOC-LF method is shown in Figure 2. Two
computational grids are defined in view of the
above element classes: individual cells with
spatial grid size (Az,,Az,) and time step size (
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At,At,). Subscripts 1 and 2 show

characteristics of grids for MOC and LF,
respectively (see Figure 3). In the last cell of
the proportionate section, the variables are
computed using MOC, which employs a time
step larger than LF. Interpolation is
subsequently used to adjust these calculated
values to match the smaller time step used by
the LF. The MOC-MOC method is similar to
the MOC-LF method, but with the difference
that the disproportionate element is solved by
the MOC. The time step in the disproportionate
reaches is smaller than the time step in the
proportionate reaches in this method.

2.2.1. MOC approach

MOC has been widely used for transient
analysis. This transformation is applied to Eq.
(7) as described by Tijsseling (2003; 2009); Li
et al. (2003), and also illustrated by Keramat et
al. (2012). The governing equations are
transformed  into  ordinary  differential
equations that can be solved through
characteristic lines using finite-difference
exactly. The method may also be referred to as
diagonalization of the system of partial
differential equations. Considering Eq. (7),
from |[B-A1A|=0, the eigenvalues 4 are

obtained as:

A 1
Cf:%z_ﬂ“z:\/E(Vz_ 7/4_4C$Ct2)
10
p: D (10)

f
y=ci+c¢ +o——c’
p, e

A 1
€ =A=—A = 5(72 +rt —4cict) (1)

Multiplying Eq. (7) by T, where T=SAl and
S represents the matrix of eigenvectors
corresponding to the eigenvalues 4, allows us

to decouple this equation into four independent
ordinary differential equations. Consequently,
the diagonal matrix of eigenvalues A should
satisfy the following relation:

SYS'B)S=A (12)

Multiplying by S? and using S* = TA results
in the following:

TB = ATA (13)

Using v = TAy, equation (7) can be rewritten
as follows:

oV oV
a0
: (14)
OV. oV, )
or —+4—=0,i=1,234
ot oz

The characteristic lines in the distance-time
plane satisfy 4 = dz/dt, so along these lines:

avi
-0
ot

Using v = Sy = TAy, the compatibility Eq.
(15) can be expressed in the original unknowns
y. This relation is then numerically integrated
along the relevant characteristic line
connecting Al and A2 with P corresponding to

eigenvalues (wave speeds) ¢, and -¢, , and A3
and A4 to P corresponding to eigenvalues ¢,
and -¢ (see Figure 4). This leads to the
following compatibility equations:

(TA)L (Vs =V ) +(TA),(H, —H ) +

(TA) (U —Uyy) + (TA), (0,

(TA), (Ve
(TA);; (U,

(TA) (Ve
(TA)5 (U

(15)

f

(16)

-0,,)=0

-V,,)+(TA),,(H, —H,,)+

- uzAZ) + (TA)24 (Gzp (17)

_GZAZ) =0

=V,,) +(TA),,(H, —H ) +

) +(TA),, (o, (18)

—Ups - GZAS) =0
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Report the results

f:I"r‘AtMOC

Initialize (=0 s)

Choose a time step for the system (Atyoc)
\

Computing spatial step
using the Courant condition for MOC
|

Ad

| Computing proportionate length | Solving the water hammer equations
T for the disproportionate section using LF

— t
| Computing dlspr?portlonate length | Time interpolation in the last reach of
L the proportionate part
Computing the time step for LF f

(Atmoc= N Atyp)
N should be integer, for example N=10.
|

Computing spatial step Applying boundary conditions
using the Courant condition for LF at the reservoir and valve

Solving the water hammer equations
for the proportionate section using MOC

Figure 2. Flow chart of the MOC-LF method.
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Figure 3. Schematic representation of computational grids for MOC-LF (L1 = pipe length in the solution area by
MOC, L, = pipe length in the solution area by LF, L = L1+ L, (a) division of the pipeline into two parts for the MOC
and LF implementation, (b) the constructed grids in the LF computations.
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Figure 4. Computational grid based on pressure waves, and characteristic lines for the interior nodes and nodes
adjacent to boundaries (Keramat et al., 2012).

(TA) (Vs
(TA) 5 (U,

-V, )+(TA),,(H, —H,)+

- uzA4) + (TA)44 (GZP (19)

_O-zA4) =0

At the current time step, the unknowns are
denoted by P, while Al, A2, A3, and A4
represent the calculated values at the previous
time step (Figure 4). The slope of each
characteristic line is equal to the inverse of the
corresponding wave speed. Here, the numerical
time step is aligned with the pressure wave grid
(At = AzE, ). The components of the T matrix in

equations (16) - (19) are:
T,=T,=1T,=-T,,

T, =T, = 20¢, (1—(6f /e )2) ,

To =Ta = p;:s - -@/s)) . e
o B )

T oT, 2142 fziEDcf ( ~(c, /6 )2)_1,

T, =T, =¢

At each time step, the Egs. (16)—(19) along with
the boundary conditions using a compatible
inverse solution matrix are solved.

Since the grid used is based on pressure waves,
the stress wave characteristic lines may not
align with grid points from the previous time
step (e.g., points A3 and A4 in Figure 4). To
address this issue, linear interpolation is
employed, using known values from adjacent

computational sections on the same time line.
Interpolation is performed for points whose
characteristic lines do not meet the previous
time line, using data from both the current and
previous time steps. First, the values of the
boundary nodes are obtained, and then the
internal nodes are calculated. This sequential
process is necessary because the boundary
values at the current time step are needed for
interpolation.

2.2.2. LF approach

The LF method is based on a piecewise
constant approximation of the solution, but it
does not require solving a Riemann problem for
time advancing, and only uses flux estimates.
This method is a prototype of many central
schemes (Shampine, 2005; Chikitkin et al.,
2015). The advantage of the LF is the
simplicity of the algorithm, and the fast and
stable calculations. This popular scheme for
general non-linear flux functions depends on
three basic assumptions: (i) the computational
results are replaced with the piecewise constant
cell averages at times t" and t" + 0.5 At™®° (ii)
there is an upper bound » on the characteristic
speed, so that vy |d(By)/d(Ay)| < @ (iii) the

timestep is chosen so that (Trangenstein, 2009):

Vi oAt™* < Az, (21)

in which zj = 0.5(zi+05 + zi-05) for the grid cell
centers. The divergence theorem is applied to
Eqg. (7) over the space-time rectangle (zi, zi+1)
x (", t"+0.5 At™** ). Since the solution is
piecewise constant at time t" and the timestep is
chosen so that waves from the constant states
do not reach the cell centers by time t"+0.5
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n+05

, the fluxes are constant in time at the cell
centers in this application of the divergence
theorem:

t"+0.5A" %% 7, ay ay

0= j j(AE+BE)dzdt (22)

Zin

_Aj y(z,t" +0.5At"¥?)dz - Ajy(zt )dz

t"+0.5A1" Y2 t"+0.5At" Y2
B [ y@.hd-B [ y@.bad
t" t"
- Aj y(z,t" +0.5At"¥?)dz — A[yI +yh, 2*1
Atn+1/2 Atn+1/2
B - By!
y|+1 2 yl 2

The numerical results are replaced at half-time
with the cell averages. A second half-step is
similar, applying the divergence theorem over
the rectangle (zios, zi+o5)x (t" + 0.5 At"*°, t" +
AL™),

The following formulas are obtained for the
two half-steps:

n+. Z AZ|+
Ay =AY —+y.+1 21)

i+1/2 T
Atn+1/2 (23)
- Yia—Y i)]m
_n+1/2+ _n+l/2
Ayin+1 _ A(yl—l/z 2y|+1/2 )
n+]/2 (24)
~B(y!: - .”2}/5)
For a uniform grid, At=At""* and

Az = Az, = Az, ., EQs. (23) and (24) become:

n+. l n n
yiofE = STyl -
(25)

- At n n
(A lB)E(ynl _yi )

yit = (y."rjf Y-

(26)
A—lB il _n+]/2 . _n+1/2
( ) A7 (y|+]/2 y|7]/2 )

2.2.3. Boundary conditions

In this study, the pipe system consists of a
reservoir at the upstream end of the pipeline
and a valve at the downstream end discharging
to the atmosphere. The location of boundary
conditions is shown in Figure 5. The boundary
conditions describing a constant reservoir head
(Hres) at the connection point to the pipe are:

H = HRes (27)

u =0 (28)
The reservoir is in the range of a proportionate
part (MOC).

The valve is in the range of the disproportionate
reach. For simulating junction coupling, the
free downstream valve of zero mass and with
gradual closure are modeled by:

vy, -7 i’rzw (29)
VO HO (CdA/)O
(0, =0,0)A =p;9A (H—-H,) (30)

Eqg. (30) defines the forces balance over the
moving valve between the fluid pressure (

p.0A (H-H,)) and the pipe-wall stress (

(6, -0,)A). Ho, Vo, and o,, are steady-state

head, velocity and axial pipe stress at the
upstream end of the valve, respectively. As =
cross-sectional discharge area, At = Cross-
sectional pipe wall area. The opening ratio of
the valve, r , is usually defined by the
manufacturer over time. It is a function of cq =
discharge coefficient and Ay = opening area of
the valve, depending on the valve type and
function. In the current simulation, the
following function for z(t), which is specified

based on measurements on a bhall-valve is used
(Hou et al., 2012):
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@-(t/T))* for 0<t<0.4T,
7(t) =40.394(L— (t/T.))"" for 0.4T <t<T,
0 for t>T

(31)

in which T¢ is the duration of the valve closure.
In Poisson coupling only, the valve is fixed to
eliminate junction coupling. This means:

u =0 (32)
3. Results and Discussion

3.1. Verification of Numerical Model

The numerical model is built into the

MATLAB computer software. To illustrate the
proposed method (MOC-LF) and compare its
predictions with MOC-MOC and MOC with a
very fine grid, two cases are solved numerically
based on a reservoir-pipe-valve system.

3.2. Water hammer

The properties of the test problem are: pipe
length (L)=1017 m, pipe diameter (D)=50 mm,
pressure wave speed (cf)=1000 m/s, steady-

A
. ° ° e o o
. . ° e o o
. ° . e o o
ny+1@——0——0——0—0opo0o
eooe g-o-c:>-o-3:>-o-
m ¢ > Sotods
ee0ooe g-o--8:>-o-:b-o-
ny — 1€ ) ) ? %}o-é)-o-d:)-o
ceooe ¢"0¢:"°'é"°'
A A A
z=0 L, z=1,
L,
Gl
z=1L, z=1
L = L1 + LZ

state velocity (Vo)=0.5 m/s, and reservoir head
(Hres)=45 m. For the generation of the
transient, the valve is closed instantaneously
and gradually (within 0.2 s).

In Figure 6, the head time history of the valve
is plotted for instantaneous valve closure. The
results are plotted in a water hammer period (t
=4L/c). The MOC-LF and MOC-MOC
predictions are compared with corresponding
results of MOC with a very fine grid, which are
taken as a reference. The results show a good
agreement between the proposed method and
the exact solution. As the spatial step size
increases (the length of the disproportionate
part increases), the difference between the
common MOC results and the results of the
MOC-LF (and MOC-MOC) gets greater,
especially around the discontinuity region, as
seen in Figure 7. It should be noted that the
MOC profile in the following figures shows the
results by solving only the proportionate part of
the pipe using the conventional MOC.

A Initial conditions
€@ Boundary conditions for MOC at the upstream

B Boundary conditions for LF at the downstream

Figure 5. Stencil of initial and boundary conditions for the MOC-LF method.
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Figure 6. Pressure head comparison of the different methods at the valve (z = L) for instantaneous valve closure
(A,=10 At,), () Az, =5m, (b) Az, =10 m.
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Figure 7. The zoomed picture for Figure 6 in the discontinuous region.
100 100
—MOC-LF —NMOC-LF
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——Reference ——Reference
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T 40 T 40
_ -
= 20t 1 = 20t 1
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0 1 2 3 4 0 1 2 3 4
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Figure 8. Pressure head comparison of the different methods at the valve (z = L) for gradual valve closure
(At =10At, ), (a) Azy =5m, (b) Az, =10m.
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The pressure head results versus time are
plotted for gradual valve closure in Figure 8.
The results show that MOC-LF and MOC-
MOC can simulate head fluctuations with the
desired accuracy. Similar to instantaneous
valve closure, as the spatial step increases, the
difference between the MOC results and the
reference results grows.

The model performance is quantified using
RMSD for the pressure head.

nstep .
Z (H. - Hi )2
= (33)
nstep

RMSD =

where nstep = number of time steps in a water

hammer period; H =reference value of
pressure head; and H = predicted pressure head
using suggested method. Table 1 compares
RMSD of conventional MOC, MOC-LF, and
MOC-MOC schemes with MOC with a very
fine grid for a water hammer period.
Conventional MOC with Az,=5 m, Az,=10 m,

and Az, = 15 m simulates pressure head with

less accuracy than MOC-LF and MOC-MOC.
The origin of this lack of accuracy is ignoring
the remaining length, which by increasing this
length size, the accuracy of the results
decreases. Furthermore, Table 1 demonstrates
that the MOC-LF and MOC-MOC results are

more accurate in gradual valve closure than
those in the case of instantaneous valve closure.

3.3. Fluid-structure interaction

Classical water hammer models do not consider
the pipe end movement. This section thus aims
to check the accuracy of the proposed method
to simulate the effect of pipe-end movements
on the pipe response.

The specifications of the test problem are: pipe
length (L)=1017 m, pipe diameter (D)=206.4
mm, pipe thickness (e) = 6.35 mm, pipe density
( p, )=7900 kg/m3, fluid density ( p, )=880

kg/m3, Young’s modulus (E)=210 GPa,
Poisson’s ratio (v) = 0.3, bulk modulus (K) =
2.1 GPa, steady-state velocity (Vo) =1 m/s, and
reservoir head (Hres) = 0 m. The pressure wave
speed (cr) and axial stress wave speed (ct) are
calculated with Eq. (3) and Eg. (6),
respectively. In Figure 9, the computed time
histories of the analysis with junction coupling
are compared with those of reference. As seen,
MOC-LF and MOC-MOC results show
agreement with the reference solution.

Figure 10 presents the pressure, velocity, and
axial pipe stress predicted by MOC-LF and
MOC-MOC for the Poisson coupling.
Simulation results are in good accord with
reference results.

Table 1. RMSD for instantaneous and gradual valve closure (At, =10 At, ).

RMSD (m)
Instantaneous Gradual
Method Az, =5(@m) Az =10 Az =15 Az, =5 Az, =10 Az =15
(m) (m) (m) (m) (m)
MOC 8.6 14.0 18.9 2.1 6.2 11.6
MOC-MOC 55 8.3 11.1 0.6 15 2.7
MOC-LF 55 8.7 11.1 0.8 19 35
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Figure 9. Comparison of the junction coupling results (At, =10 At,, Az, =5 m) using the MOC-LF, MOC-MOC,

and the reference solution, (a) pressure head at the valve, (b) velocity at the reservoir, (c) axial pipe velocity at the
valve, and (d) axial pipe stress at the reservoir.
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Figure 10. Comparison of the Poisson coupling results (At, =10 At, =10, Az, =5 m) using the MOC-LF, MOC-

MOC, and the reference solution, (a) pressure head at the valve, (b) velocity at the reservoir, (c) axial pipe stress at
the reservoir.

The RMSD for MOC-LF, MOC-MOC, and
conventional MOC with various spatial steps
are shown in Table 2. The initial flow velocity
is 1 m/s, which results in the Joukowsky
pressure of 105 m. The estimated RMSE
indicates that the square deviation for the
MOC-LF method is quite small in comparison
to Joukowsky pressure (RMSD is almost 8%
of Joukowsky pressure for Az, =15 m).

4. Conclusions

This research work investigates the efficiency
of the MOC-LF method to simulate the water
hammer and fluid-structure including Poisson
and junction coupling. The MOC-LF and
MOC-MOC methods calculated pressure head

variations with time throughout the pipeline,
even around discontinuities, with desired
accuracy in water hammer simulation. The
water hammer results with gradual valve
closure have a smaller RMSD than the results
of instantaneous valve closure. The FSI results
are more accurate in junction coupling than
those in the case of Poisson coupling. The
MOC-LF method gives very good results and
is more accurate than MOC-MOC in FSI
simulations. MOC-LF can be an alternative for
conventional MOC schemes. The latter
method suffers from restrictions on selecting
time or space steps.



Khalighi et al., 2025 / Journal of Hydraulic and Water Engineering (JHWE), Vol. 2, No. 1, 2025, 13-28. 26

Table 2. RMSD for FSI with junction and Poisson coupling ( At, =10 At, ).

RMSD (m)
Junction coupling Poisson coupling
Method
Az, =5(m) Az,=10 Az, =15 Az, =5 Az, =10 Az, =15
(m) (m) (m) (m) (m)
MOC 2 5.7 7.0 35 9.3 104
MOC-MOC 35 6.8 9.6 6.0 10.8 12.7
MOC-LF 2 3.6 4.1 3.1 5.6 8.1
At : Time step

Nomenclature

A: Matrices of constant coefficients
B: Matrices of constant coefficients
Cr: Courant number

c: Wave speed

D: Inner pipe diameter

E: Young's modulus for pipe wall material
e: Pipe wall thickness

g: Gravitational acceleration

H: Fluid pressure head

K: Fluid bulk modulus

L: Pipe length

N: Number of pipes in the system
n: Number of reaches in pipe

t: Time

u, : Axial pipe velocity

V: Fluid velocity

Az : Spatial step

p : Density

o : Pipe stress

v : Poisson's ratio

f: Fluid

J: Pipe number

t: Tube, pipe

Z: Axial direction
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